
Comparison of Galerkin Methods applied to Classi
al Me
hani
sM. Gro�, P. Bets
h and P. SteinmannAbstra
t. In this paper we 
ompare two Galerkin �nite element methods in time whi
h use 
ontinuous anddis
ontinuous pie
ewise polynomials for trial and test fun
tions. We apply both methods for approximatingthe solution of Hamilton's 
anoni
al equations. Considering natural systems, we investigate the algorithmi

onservation properties of both methods for linear time �nite elements applied to the one-body 
entralfor
e problem. In this 
ontext, we present quadrature rules leading to algorithmi
 total energy and angularmomentum 
onservation, respe
tively.Keywords. Galerkin method, �nite element method, initial value problem, Hamilton's 
anoni
al equations,
onservation laws, quadrature.1 Introdu
tionIn the present paper we 
ompare the algorithmi
 
onservation properties of the dis
ontinuous Galerkin (dG)method with those of the 
ontinuous Galerkin (
G) method for natural me
hani
al systems.In parti
ular, we 
onsider autonomous natural Hamiltonian systems and use the two di�erent Galerkinmethods for solving Hamilton's 
anoni
al equations pertaining to the one-body 
entral for
e problem. There-fore, the 
onservation of total energy as well as total angular momentum is treated. The dG method 
anbe tra
ed ba
k to Lasaint and Raviart [15℄, see also the book of Eriksson et al. [6℄. For the 
G method,usually a

redited to Hulme [14℄, see also Eriksson et al. [6℄, the algorithmi
 
onservation properties havebeen examined in Bets
h and Steinmann [3, 4, 5℄.Sin
e the exa
t 
al
ulation of the time integrals appearing in the 
G and dG method is rarely feasible,we investigate the in
uen
e of spe
i�
 quadrature rules on the algorithmi
 
onservation properties of bothmethods.An outline of the paper is as follows. In Se
tion 2, we begin by re
alling the de�nition of a natural systemand Hamilton's 
anoni
al equations. Subsequently, we give a review of the 
onservation laws prevailing inthe systems we 
onsider; see Arnold [1℄. Firstly, we point out the total energy 
onservation in naturalsystems and thereafter, we review the law of 
onservation of total angular momentum pertaining to onlyone parti
le in a

ordan
e with Goldstein [8℄. Se
tion 3 
ontains the underlying initial value problem to besolved. Then, after we have presented the 
ontinuous as well as the dis
ontinuous Galerkin �nite elementapproximation of Hamilton's 
anoni
al equations, we point out that the 
ontinuous Galerkin �nite elementmethod inherently 
onserves an autonomous Hamiltonian after ea
h time step (algorithmi
 
onservation).Subsequently, we demonstrate a possibility to prove a de
ay of the algorithmi
 Hamiltonian determined bythe dis
ontinuous Galerkin �nite element method provided that parti
ular 
onditions hold. We 
on
lude thisse
tion by demonstrating a relationship between both methods in the 
ase of linear time �nite elements. InSe
tion 4, we investigate the algorithmi
 
onservation properties of the 
ontinuous as well as the dis
ontinuousGalerkin �nite element method for motions of one parti
le in a three-dimensional 
entral for
e �eld, wherewe restri
t ourselves to linear time �nite elements. Firstly, we 
onsider solely Hooke's 
entral for
e law andthereafter we let the 
entral for
e law be arbitrary. In this 
onne
tion, we point out for arbitrary 
entralfor
e laws how algorithmi
 
onservation of total energy and total angular momentum 
an be obtained byapplying spe
i�
 quadrature rules. Con
lusions are drawn in Se
tion 5.2 Hamilton's 
anoni
al equations and 
onservation laws2.1 De�nition of a natural systemLet fqigndofi=1 be a set of independent generalized 
oordinates of a Lagrangian dynami
al system with ndofdegrees of freedom, whi
h are arranged into the generalized 
oordinate ve
tor q :=(qi)ndofi=1 2Rndof . A naturalsystem 
onsists of a Lagrangian L :=T�V , where the total kineti
 energy T =T (q; _q) is a positive de�nite1



quadrati
 form with respe
t to the generalized velo
ity ve
tor _q= dq=dt. Furthermore, V = V (q) denotesthe total potential energy from whi
h the set of 
onservative generalized for
es fQigndofi=1 are derived byQ=��qV , where Q :=(Qi)ndofi=1 2Rndof denotes the generalized for
e ve
tor.2.2 Hamilton's 
anoni
al equationsIn the Hamiltonian approa
h of dynami
s the motion of the system is des
ribed by 2ndof independentvariables. Thus the equations of motion are in terms of 2ndof �rst-order di�erential equations; see Arnold [1℄.Theorem 2.1 Given a Lagrangian L being 
onvex with respe
t to the generalized velo
ity ve
tor _q. Then,Lagrange's equation _p=�qL, where p=� _qL, is equivalent to Hamilton's 
anoni
al equations, given by_q = �pH; _p = ��qH ; (1)where H is the Legendre transform of the Lagrangian L viewed as a fun
tion of _q.Proof. Owing to the 
onvexity of the Lagrangian L, the Legendre transform of L with respe
t to _q, givenby H(q;p) := sup_q h(q; _q;p); (2)where h(q; _q;p) :=p � _q � L(q; _q), is unique. The new ve
tor variable p is thus de�ned from the extremal
ondition � _qh=0 as p := � _qL: (3)The total di�erential of the Hamiltonian H =H(q;p) is equal to the total di�erential of h= h(q; _q;p) forp = � _qL. Taking equation (3) into a

ount, a 
omparison of the 
oeÆ
ients pertaining to the remainingdi�erentials furnishes Hamilton's 
anoni
al equations (1). Therefore, Lagrange's equation and Hamilton's
anoni
al equations are equivalent.Remark 2.1 The s
alar fun
tion H(q;p) is 
alled the Hamiltonian. With regard to de�nition (3), onerefers to the new ve
tor variable p as the generalized momentum ve
tor.Remark 2.2 Hamilton's 
anoni
al equations des
ribe the dynami
s of the system whi
h is therefore 
alledHamiltonian system.Remark 2.3 The 
onvexity of the Lagrangian L with respe
t to _q is generally ful�lled for natural systemsowing to the positive de�nite quadrati
 form of the kineti
 energy T .2.3 Conservation of the total energy of natural systemsTheorem 2.2 Given a natural Hamiltonian system. If the Hamiltonian H does not depend expli
itly ontime, that is, �tH = 0, the total energy is 
onserved.We prove Theorem 2.2 by two preliminary results represented by the following lemmas; see Arnold [1, 2℄.Lemma 2.1 The Hamiltonian H of a natural system is the total energy of the system, that is, H = T + V .Proof. Owing to the quadrati
 form with respe
t to _q, T is homogeneous of degree two. Therefore, Euler'stheorem for homogeneous fun
tions yields � _qT � _q = 2T . Sin
e the potential energy V =V (q) depends only onq, one obtains � _qL = � _qT . A

ordingly, with equation (3) the fun
tion h results in h = 2T�(T�V ) = T+Vand thus the Hamiltonian reads H = (T + V )j _q!p.Lemma 2.2 Given an arbitrary Hamiltonian System. If the Hamiltonian H does not depend expli
itly ontime (autonomous Hamiltonian system), the Hamiltonian is 
onserved, that is, H(q;p) = 
onst.2



Proof. For a system whose Hamiltonian does not depend expli
itly on time, Hamilton's 
anoni
al equationslead to _H = �pH � (��qH) + �qH � �pH = 0. Therefore, the Hamiltonian H remains 
onstant.Proof of Theorem 2.2 By Lemma 2.1 the total energy of a natural system is equal to its Hamilto-nian H . A

ording to Lemma 2.2, the Hamiltonian H of an autonomous Hamiltonian system is a 
onstantof the motion. Hen
e it follows that the total energy of a natural autonomous Hamiltonian system is 
on-served.2.4 Conservation of the total angular momentum of a parti
leConsider the motion of a parti
le of mass m in the three-dimensional Eu
lidean spa
e E3 relative to aninertial Cartesian 
oordinate system with the origin O.We begin by re
alling some de�nitions:De�nition 2.1 Let P :=m _r denote the total linear momentum of a parti
le of mass m, where r is theradius ve
tor of the parti
le beginning at the origin O.Remark 2.4 Noti
e that if qi is not a Cartesian 
oordinate, the 
orresponding generalized momentum pidoes not ne
essarily have the dimension of the linear momentum Pi, i=1; 2; : : : ; ndof .Notation 2.1 In the following, we use the briefer notation 1(1)n :=1; 2; : : : ; n, where n2N.De�nition 2.2 The total angular momentum of a parti
le of mass m about O, denoted by L, is de�ned asL :=r �P :De�nition 2.3 The total torque N about O is the ve
tor produ
t N := r � F ; where F = _P is the totalfor
e.Now let us formulate the law of 
onservation of total angular momentum asTheorem 2.3 If the total torque N about O vanishes, then the total angular momentum L about O is a
onstant of the motion.Proof. We may write the total torque asN = r � ddt (m _r) = ddt (r �m _r)� _r �m _r = _L; (4)where the produ
t rule of di�erentiation was used. Hen
e, for a vanishing total torque N the total angularmomentum L is preserved.2.5 Compa
t formulation of the initial-value problemFor our ensuing 
onsiderations it proves 
onvenient to rewrite Hamilton's 
anoni
al equations in a more
ompa
t form by introdu
ing the new variable z := (q;p) 2 R2ndof , known as symple
ti
 variable; seeArnold [2℄. On the ve
tor spa
e R2ndof a symple
ti
 linear stru
ture is given by a nondegenerate bilinearskew-symmetri
 2-form in terms of the skew-s
alar produ
t [u;v℄=�[v;u℄, u;v 2 R2ndof ; see Arnold [1, 2℄.The ve
tor spa
e R2ndof , together with the symple
ti
 stru
ture [�; �℄, is 
alled a symple
ti
 ve
tor spa
e. Thesymple
ti
 basis of R2ndof , denoded by feqi ; epigndofi=1 , is de�ned by [epi ; eqj ℄=Æij and [eqi ; eqj ℄=[epi ; epj ℄=0,i; j=1(1)ndof . The skew-s
alar produ
t 
an be expressed in terms of a s
alar produ
t by [u;v℄ := (Ju;v).The matrix of the skew-symmetri
 operator J with respe
t to the symple
ti
 basis assumes the form of a2ndof�2ndof hypermatrix J 2M2ndof (R) over R, given byJ := � O I�I O � ; (5)3



where the matri
es O; I 2Mndof (R) are the ndof�ndof zero and identity matrix, respe
tively. A

ording toArnold [2℄, the hypermatrix J is 
alled the symple
ti
 unit matrix .Hamilton's 
anoni
al equations are now equivalent to Hamilton's equation, given by_z = JDH(z): (6)Remark 2.5 Using the fa
t that M2ndof (R) is homeomorphi
 to R(2ndof )2 , in the subsequent dis
ussionwe also regard the symple
ti
 variable z and Hamilton's equation (6) as matrix and system of generallynonlinear equations, respe
tively. Then, DH(z) is the Ja
obian of the Hamiltonian H with respe
t to z.Supplemented with the initial 
ondition z(t0)=zt0 , the equation (6) gives rise to the following initial-valueproblem: �nd z : It ! R2ndof su
h that� _z(t) = JDH(z(t)) for t0 < t � T;z(t0) = zt0 ; (7)where It :=[t0; t0 + T ℄ is the time interval of interest.To obtain a numeri
al solution of the initial-value problem (7) on the time interval It, we perform adis
retization in time. Therefore, for the given interval It we let t0 < t1 < : : : < tN be a partition intosubintervals In := [tn�1; tn℄ of length hn := tn � tn�1, n=1(1)N . We further introdu
e a transformation Tnto a master element I� :=[0; 1℄, de�ned byTn : t 7! �(t) := t� tn�1tn � tn�1 = t� tn�1hn : (8)In other words, we substitute the variable � and the di�erential operator d=d� for the time t and thedi�erential operator d=dt=h�1n d=d�, respe
tively.In view of the �nite element formulations treated next, we 
onsider the following alternative statementof the initial value problem: �nd z : I� ! R2ndof su
h that� z0(�) = hnJDH(z(�)) for 0 < � � 1;z(0) = z0; (9)where the prime indi
ates di�erentiation with respe
t to �, that is, (�)0= d(�)=d�.3 Galerkin �nite element formulationsWe fo
us next on two alternative �nite element formulations for the numeri
al solution of the initial valueproblem (9). In parti
ular, the two formulations are based upon the 
ontinuous and dis
ontinuous Galerkinmethod.3.1 The 
ontinuous Galerkin 
G(k) methodLet Pk(0; 1)2ndof denote the spa
e of 2ndof -dimensional polynomials of degree k on the interval I�. The
ontinuous Galerkin approximation of the inital value problem (9) is formulated by: �nd a trial fun
tionzh 2 Pk(0; 1)2ndof su
h that for all test fun
tions Æzh2Pk�1(0; 1)2ndof ,Z 10JÆzh �h�zh�0 � hnJDH(zh)i d� = 0: (10)We refer to the weighted residual statement (10) as the weak form of the initial-value problem (9); see Bets
hand Steinmann [3, 4, 5℄.Remark 3.1 Con
erning Hamilton's equation (6), the 
oeÆ
ients of the trial and test fun
tions are ve
torsof the symple
ti
 ve
tor spa
e R2ndof with the stru
ture [�; �℄. Therefore the skew-orthogonality of twove
tors u;v 2 R2ndof is de�ned by [u;v℄ =Ju � v=0. A

ordingly, the Galerkin orthogonality is given bythe weighted residual statement (10). 4



PSfrag repla
ements 0=1 2 �� = 0 � = 1Figure 3.1 Continuous polynomial approximation (k=1) on the master element I�.As basis of Pk(0; 1)2ndof we use the Lagrange basis fMI(�)gk+1I=1 asso
iated to the distin
t k+1 nodes�1<�2<: : :<�k+1 in I�, whi
h is determined by the requirement that MI(�J )=ÆIJ , the Krone
ker delta.The expli
it expression for the basis fun
tion MI(�) isMI(�) = k+1YJ=1J 6=I �� �J�I � �J ; I = 1(1)k+1: (11)Remark 3.2 By de�nition QJ2; = 1. Therefore, for the 
ase k = 0 we obtain from equation (11) the nodalshape fun
tion M1 = 1.Remark 3.3 We refer to Table 3.1 for the Lagrange basis fun
tions fMI(�)gk+1I=1 of polynomial degreek=0(1)2.Satisfying zI :=zh(�I) at the nodes f�Igk+1I=1, the polynomial zh(�)2Pk(0; 1)2ndof may be expressed interms of the 
orresponding Lagrange basis aszh(�) = k+1XI=1MI(�) zI ; (12)so that the values fzh(�I)gk+1I=1 are the 
oeÆ
ients of zh(�) with respe
t to the Lagrange basis.For global 
ontinuity of the trial fun
tions we have to state the following 
ontinuity 
ondition at thebeginning of ea
h time step (
ompare with Figure 3.1 and equation (9)):z1 = z0: (13)Notation 3.1 We also refer to the Lagrange basis and the Lagrange basis fun
tions as the nodal basis andthe nodal shape fun
tions, respe
tively.The test fun
tion Æzh is an element of the spa
e Pk�1(0; 1)2ndof su
h that it takes the form, given byÆzh(�) = kXI=1 ~MI(�) ÆzI ; (14)where ~MI indi
ates redu
ed shape fun
tions de�ned by the relation�zh�0 (�) = k+1XI=1M 0I(�) zI =: kXI=1 ~MI(�) ~zI : (15)k = 0 M1 = 1k = 1 M1 = 1� �M2 = �k = 2 M1 = (2�� 1)(�� 1)M2 = �4�(�� 1)M3 = �(2�� 1)Table 3.1 Lagrange basis fun
tionsMI(�) of polynomial degree k=0(1)2.5



PSfrag repla
ements 0 1 2 �� = 0 � = 1Figure 3.2 Dis
ontinuous polynomial approximation (k=1) on the master element.Remark 3.4 Note that the test fun
tion (14) leads to possible dis
ontinuities a
ross the element boundaries.Remark 3.5 We refer to Table 3.2 for the redu
ed shape fun
tions f ~MI(�)gkI=1 and the asso
iated quantitiesf~zIgkI=1 of polynomial degree k=1(1)2.Notation 3.2 Following the terminology of Eriksson et al. [6℄, we refer to the 
ontinuous Galerkin �niteelement method just de�ned brie
y as the 
ontinuous Galerkin 
G(k) method.Inserting equations (14) and (15) into the weak form (10), owing to the arbitrariness of the fÆzIgkI=1 onea
h subinterval In one obtains the following set of equations (general 
G(k) method):kXJ=1 Z 10 ~MI ~MJd� ~zJ � hnZ 10 ~MIJDH(zh)d� = 0; (16)for I=1(1)k, where 0 indi
ates the zero ve
tor.The k equations (16) represent a family of impli
it multi-level one-step s
hemes of whi
h a spe
i�
member is obtained by sele
ting the polynomial degree k as well as a spe
i�
 quadrature rule for 
omputingthe integrals of the generally nonlinear Ja
obian DH .3.2 The dis
ontinuous Galerkin dG(k) methodSe
ondly, we use a Galerkin �nite element method for whi
h the trial as well as the test fun
tions aredis
ontinuous pie
ewise polynomials of degree k. This method is known as the dis
ontinuous Galerkin dG(k)method ; see Eriksson et al. [6℄. Owing to the degree k of the test fun
tions, the number of the algebrai
equations is in
reased by one in 
ontrast to the 
ontinuous Galerkin 
G(k) method.Let the trial spa
e as well as the test spa
e be given by Pk(0; 1)2ndof . Further, let the trial fun
tion zh(�)have the same form as in the 
ontinuous Galerkin 
G(k) method, that is, the form given by equation (12).However, let the test fun
tion have the formÆzh(�) = k+1XI=1MI(�) ÆzI : (17)To prevent that the nodal values fzIgk+1I=1 of the trial fun
tion are over-determined, one gives up the 
ontinuity
ondition (13). For that reason, one generally gets a jump [[zh℄℄ :=z1�z0 6=0 (dis
ontinuity) in the masterelement I�; see Figure 3.2.The weak form of the dis
ontinuous Galerkin method for solving the initial-value problem (9) approxi-mately is as follows: Z 10JÆzh �h�zh�0�hnJDH(zh)i d�+ JÆz1 � [[zh℄℄ = 0: (18)k = 1 ~M1 = 1 ~z1 = z2 � z1k = 2 ~M1 = 1� � ~z1 = �3z1 + 4z2 � z3~M2 = � ~z2 = z1 � 4z2 + 3z3Table 3.2 Redu
ed shape fun
tions ~MI(�) and asso
iated quantities ~zI for polynomial degree k=1(1)2.6



Be
ause of the presen
e of the term J Æz1 � [[zh℄℄, the initial 
ondition is satis�ed weakly.Taking into a

ount the �nite element approximations (12) and (17), the weak form (18) furnishes thefollowing system of equations (general dG(k) method):k+1XJ=1 Z 10MIM 0Jd� zJ � hnZ 10MIJDH(zh)d�+ Æ1I [[zh℄℄ = 0; (19)for I=1(1)k+1, where we introdu
ed the Krone
ker delta Æ1I to express the identity Æz1=Æ1IÆzI .Analogous to the 
ontinuous Galerkin 
G(k) method, a spe
i�
 time-stepping s
heme is de�ned by �xingk and 
hoosing a spe
i�
 quadrature rule for 
al
ulating the integrals of DH .3.3 The algorithmi
 Hamiltonian of the 
ontinuous Galerkin 
G(k) methodNotation 3.3 In the following we refer to Hi :=H(zi), i=0(1)k+1, as the algorithmi
 Hamiltonian or thealgorithmi
 total energy, respe
tively, at the ith node of the master element I�.Theorem 3.1 The 
ontinuous Galerkin 
G(k) method 
onserves an autonomous Hamiltonian H algorith-mi
ally.Proof. Consider the weak form (10) of the 
ontinuous Galerkin 
G(k) method. Due to the arbitrariness ofthe fÆzIgkI=1, the test fun
tions may be written asÆzh = (zh)0: (20)Employing equation (20) in equation (10), the weak form takes the formZ 10J�zh�0 � �zh�0 d�� hnZ 10J�zh�0 � JDH(zh)d� = 0: (21)Owing to the skew-symmetry of the symple
ti
 unit matrix J , the �rst term vanishes and moreover, utilizingthe orthogonality of J , one obtains Z 10DH(zh) � �zh�0 d� = 0: (22)On the other hand, the Fundamental Theorem of Cal
ulus states for an autonomous Hamiltonian HZ 10H 0(�) d� =Z 10DH(zh) � �zh�0d� = Hk+1 �H1; (23)Applying equation (23) to equation (22) implies that an autonomous Hamiltonian is 
onserved algorithmi-
ally, that is, Hk+1=H1.3.4 The algorithmi
 Hamiltonian of the dis
ontinuous Galerkin dG(k) methodProposition 3.1 Let the Hamiltonian H be 
onvex with respe
t to z and autonomous. Then, the dis
on-tinuous Galerkin dG(k) method yields a de
ay of the algorithmi
 Hamiltonian H(zh) for (i) 
onstant time�nite elements, that is, k = 0, in 
onjun
tion with an arbitrary potential V , and for (ii) arbitrary k ifDH(zh)=Hzh, with H2M2ndof (R) being 
onstant.Proof. Consider the weak form (18). Owing to the arbitrariness of the fÆzIgk+1I=1 , the test spa
e is su
hthat the following relationship between the trial fun
tions and the test fun
tions hold for (i) and (ii):Æzh = J�1DH(zh): (24)In the present 
ase the Fundamental Theorem of Cal
ulus 
an be written asZ 10DH(zh) � �zh�0 d� = Hk+1 �H1: (25)7



Then, substituting from equation (24) into the weak form (18) leads toHk+1 �H1 +DH(z1) � [[zh℄℄ = 0; (26)where the skew-symmetry of the symple
ti
 unit matrix J has been taken into a

ount.On the other hand, write the algorithmi
 Hamiltonian H0=H(z1�[[zh℄℄) by means of Taylor's theoremin the following form: H0 = H1 �DH(z1) � [[zh℄℄ +Q�([[zh℄℄); (27)where Q�([[zh℄℄) := 12H�[[zh℄℄ � [[zh℄℄. The matrix H� :=D2H(z�) is de�ned as the Hessian of the HamiltonianH at z� with z�2 [z0; z1℄.Finally, repla
ing H1 in equation (27) with equation (26), one obtainsHk+1 �H0 = �Q�([[zh℄℄): (28)A 
onvex Hamiltonian implies a positive de�nite quadrati
 form Q�([[zh℄℄). Therefore, a

ording to equation(28) a 
onvex Hamiltonian leads to a de
ay of the algorithmi
 Hamiltonian H(zh).Remark 3.6 Obviously, the latter 
ase is ful�lled by a quadrati
 potential V ; also see Hulbert [12℄.3.5 Derivation of 
G(1) time-stepping s
hemes using the general dG(1) methodNotation 3.4 We refer to quadrature as the approximated integration of an arbitrary fun
tion f(�) overI�, that is, Z 10 f(�)d� � NqXl=1 f(�l)wl; (29)where fwlgNql=12R and f�lgNql=12I� denote the weights and points of the quadrature, respe
tively.Proposition 3.2 The general 
G(1) and dG(1) methods generate identi
al time-stepping s
hemes with a
ontinuous solution if one quadrature point at � = 1=2 is employed.Proof. Consider the general dG(1) method, whi
h reads12 z2 + 12 z1 � z0 � hnZ 10M1JDH(zh)d� = 0; (30)12 z2 � 12 z1 � hnZ 10M2JDH(zh)d� = 0: (31)Addition of equation (30) and equation (31) rendersz2 � z0 � hnZ 10 (M1 +M2)JDH(zh)d� = 0; (32)and subtra
ting equations (30), (31), one obtainsz1 � z0 + hnZ 10 (M2 �M1)JDH(zh)d� = 0: (33)With the nodal shape fun
tions M1=1�� and M2=�, we obtain M1+M2=1 and M2�M1=2�� 1.Applying quadrature with one point at � = 1=2 to the integrals in equations (32) and (33) yields thedG(1) time-stepping s
heme z2 � z0 � hnWJDH(zh(12)) = 0; (34)z1 � z0 = 0; (35)8



where W = � wp I OO wqI � : (36)The weights wp and wq are asso
iated to the quadrature of �pH and �qH , respe
tively.Equation (35) is identi
al with the 
ontinuity 
ondition (13). Therefore, the solution obtained by onequadrature point at � = 1=2 is 
ontinuous. Employing equation (35) in equation (34) leads toz2 � z1 � hnWJDH(zh(12)) = 0: (37)On the other hand, the general 
G(1) method is given byz2 � z1 � hnZ 10JDH(zh)d� = 0: (38)The time-stepping s
heme (37) is identi
al with the s
heme emanating from the general 
G(1) method (38)asso
iated with one quadrature point at � = 1=2Remark 3.7 Employing one quadrature point in the general dG(1) method may be interpreted as `redu
edintegration'. This term stems from the �nite element method in spa
e; see Hughes [10℄.4 The one-body 
entral for
e problem and linear time �nite ele-mentsThis se
tion 
ontains a detailed investigation of the algorithmi
 properties of the 
G(1) and dG(1) method.In this 
onne
tion we apply both methods to a representative Hamiltonian system, namely the one-body
entral for
e problem.4.1 Hamiltonian formulationConsider the motion of a parti
le of mass m in the ambient three-dimensional Eu
lidean spa
e E3 relative toan inertial 
oordinate system. Apply the Cartesian 
oordinates fqigndofi=1 to des
ribe the ndof =3 degrees offreedom. A

ordingly, with respe
t to a Cartesian basis feigndofi=1 the position of the parti
le 
an be des
ribedby the radius ve
tor r(q) :=P3j=1 qjej . Let an external 
onservative 
entral for
e �eldF = ��rV = � dV (r)dr ur =: f(r)ur (39)a
t on the parti
le. Here, r :=krk is the magnitude of the radius ve
tor with respe
t to the Eu
lidean normk�k, so the ve
tor ur :=r=r denotes the unit ve
tor in dire
tion of the radius ve
tor and the s
alar fun
tionf represents the magnitude of the external for
e F .Remark 4.1 Sin
e the external for
e F is 
ollinear with the radius ve
tor r, the orbits of the parti
le liein a plane; see Arnold [1℄.The Lagrangian L = T � V of the natural system at hand is given byL(q; _q) = 12 m _r(q)2 � V (r(q)) = 12 m ��qr � _q�2 � V (r(q)) = 12 m _q � _q � V (pq � q); (40)Furthermore, in view of de�nition (3), the generalized momentum ve
tor p readsp = � _qL = m _q; (41)where the di�erentiation rule for quadrati
 forms was used.9



Remark 4.2 Owing to the appli
ation of Cartesian 
oordinates, the spa
es R3 and E3 are homeomorphi
and hen
e the generalized 
oordinate ve
tor q 2R3 and the generalized momentum ve
tor p2R3 have thedimensions of the radius ve
tor r2E3 and the linear momentum ve
tor P 2E3 , respe
tively.Substituting the generalized velo
ity ve
tor in the total kineti
 energy T with the generalized momentumve
tor (41) gives the Hamiltonian H(q;p) = 12m p � p+ V (pq � q): (42)Remark 4.3 Despite the simpli
ity of the 
onsidered model problem, the stru
ture of its Hamiltonian (42)
oin
ides with that of mu
h more involved problems su
h as nonlinear elastodynami
s in semi-dis
rete form;see Bets
h and Steinmann [3℄.Con
erning the potential V (q) in (42), our investigations fo
us next on two distin
t appli
ations. Firstly,we 
onsider Hooke's 
entral for
e law, and se
ondly, we deal with arbitrary 
entral for
e laws.4.2 Hooke's 
entral for
e law4.2.1 The HamiltonianHooke's 
entral for
e law, also known as isotropi
 harmoni
 os
illator, is a linear restoring for
e 
onne
tedwith ea
h degree of freedom; see Goldstein [8℄. The asso
iated potential is given by the quadrati
 formV = � 12 qT (
 I) q, where 
 < 0, with respe
t to the generalized 
oordinate ve
tor. In a

ordan
e withequation (42), one obtains the HamiltonianH(q;p) = 12m pT I p� 12 
 qT I q: (43)Using symple
ti
 notation, equation (43) 
an be written in the formH = 12 zTH z; (44)where H2M2ndof (R) is a 6�6 matrix of the formH = � �
 I OO 1m I � : (45)A

ordingly, the Ja
obian is given by DH(z) =H z: (46)4.2.2 The algorithmi
 total energyA

ording to equation (44), the algorithmi
 total energy Hk+1 at the last node of the master element isgiven by Hk+1 = 12 zTk+1H zk+1: (47)In the present 
ase, a spe
i�
 time-stepping s
heme generated by the 
G(k) or dG(k) method, respe
tively,
an be 
ast in the form zk+1 = Ak z0; (48)where for the 
G(k) method the 
ontinuity 
ondition (13) is to be in
luded. The matrix Ak 2M2ndof (R)denotes the so-
alled ampli�
ation matrix. A

ording to Ri
htmyer and Morton [17℄, we refer to (48) as thetwo-level s
heme of the 
G(k) or dG(k) method, respe
tively. Furthermore, referring to Gantma
her [7℄, oneis able to substitute the so-
alled Lagrange-Sylvester's interpolation polynomial of Ak for the matrix Akitself.Remark 4.4 The Lagrange-Sylvester's interpolation polynomial is attributed to Sylvester [20℄.10



If the roots f�igNmi=1 of the minimal polynomial pertaining to Ak are distin
t, one hasAk = NmXi=1Ak;i �i: (49)The matri
es fAk;igNmi=1 2M2ndof (C ) are 
alled the 
onstituent matri
es of the Lagrange-Sylvester's inter-polation polynomial of Ak. For distin
t roots f�igNmi=1, one hasAk;i = NmYj=1j 6=i Ak � �j1�i � �j ; i = 1(1)Nm: (50)Remark 4.5 The representation of a square matrix with distin
t roots of the 
orresponding minimal poly-nomial by the Lagrange-Sylvester's interpolation as above 
orresponds with the spe
tral representation of asymmetri
 se
ond-order tensor in 
onne
tion with the Serrin formula; see Morman [16℄.Notation 4.1 Let us refer to exa
t quadrature as the exa
t integration of fun
tions f(�) over I�.Proposition 4.1 The 
G(1) method asso
iated with exa
t quadrature preserves the algorithmi
 total energy.We use the following lemmas for the proof.Lemma 4.1 The algorithmi
 total energy H2 determined by the 
G(1) method asso
iated with exa
t quadra-ture is given by H2=�2H0, where � denotes the spe
tral radius of the ampli�
ation matrix.Proof. Consider the general 
G(1) method (38). Employ the Ja
obian (46) and 
ompute the integral byusing exa
t quadrature. The ampli�
ation matrix of the arising time-stepping s
heme takes the formA1 = 11+
24 " (1�
24 ) I hnm Ihn 
 I (1�
24 ) I # ; (51)where a

ording to Hughes and Liu [11℄ 
 :=hn ! is 
alled the sampling frequen
y and ! :=p�
=m, 
<0,denotes the eigenfrequen
y of the isotropi
 harmoni
 os
illator. The eigenvalues of the ampli�
ation matrix(51) are given by �1 = �3 = �5 = 4�
2 + i 4
4 + 
2 ; �2 = �4 = �6 = �1 = �3 = �5; (52)where i denotes the imaginary unit and the overline indi
ates the 
omplex 
onjugate. A

ordingly, theampli�
ation matrix (51) has multiple eigenvalues, that is, the 
hara
teristi
 polynomialP
(�) = 6Yi=1 (�� �i) = ((�� �1) (�� �2))3 (53)of A1 has multiple roots. A

ording to the 
hara
teristi
 polynomial (53), the minimal polynomial Pm(�) isgiven by Pm(�) = (�� �1) (�� �2). Obviously, it is Nm=deg(Pm)=2, where deg(Pm) denotes the degreeof the minimal polynomial. Determining the 
onstituent matri
es in view of equation (50) furnishesA1;1 = 12 " I 1i !m Ii !m I I # ; A1;2 = 12 " I �1i !m I�i !m I I # : (54)After employing equations (48) and (49) in equation (47), the algorithmi
 total energy H2 is given byH2 = 12 �2 zT0 0B� 2Xi;j=1j 6=i AT1;iHA1;j1CAz0 + 12 zT0  2Xi=1 �2iAT1;iHA1;i!z0; (55)11



where � denotes the spe
tral radius �(Ak) :=max j�ij=p�1�2, i=1(1)Nm, be
ause the roots �1 and �2 are
omplex 
onjugate. The 
onstituent matri
es (54) satisfy the 
onditions2Xi;j=1j 6=i AT1;iHA1;j =H ; AT1;iHA1;i = O2; i = 1(1)2; (56)where O2 2M2ndof (R) denotes the 2ndof�2ndof zero matrix. Employing the equations (56) in equation(55) leads for k=1 to H2 = 12 �2 zT0H z0 = �2H0, so that for the 
G(1) method H0=H1 by the 
ontinuity
ondition (13).Lemma 4.2 The ampli�
ation matrix of the 
G(1) method asso
iated with exa
t quadrature has a squaredspe
tral radius equal to one, that is, �2 = 1.Proof. By the eigenvalues (52), the squared spe
tral radius �2 = �1�2 results in �2 = 1.Proof of Proposition 4.1 By Lemma 4.1 in 
onjun
tion with Lemma 4.2 the algorithmi
 total en-ergy is preserved in the sense H2=H0 (see Figure 4.1), as already pointed out in Subse
tion 3.3.De�nition 4.1 We say that the quadrature is symmetri
 if the quadrature points �1<�2<: : :<�Nq andthe asso
iated weights w1; : : : ; wNq satisfy 1 = �Nq�i + �1+i and wNq�i = w1+i, i = 0(1)int([Nq � 1℄=2),respe
tively. The fun
tion int(�) gives the integer part of its argument.Remark 4.6 The 
onditions in De�nition 4.1 mean (i) that the quadrature points lie in pairs (�Nq�i; �1+i)symmetri
al to the midpoint of I� (�=1=2) and, additionally, a quadrature point exists at �=1=2 for anodd number of quadrature points and (ii) that the weights (wNq�i; w1+i) of the quadrature points pertainingto su
h a pair (�Nq�i; �1+i) are identi
al.Remark 4.7 For example, a

ording to S
hwarz [19℄, the Gaussian quadrature, whose quadrature pointsare identi
al to the zeros of the Legendre polynomials relating to I�, is symmetri
. Further, the trapezoidalrule with a quadrature point on ea
h boundary of the master element I� is also symmetri
.Remark 4.8 Note that the midpoint rule is identi
al to the Gaussian quadrature with one quadrature point.Proposition 4.2 The 
G(1) method asso
iated with symmetri
 quadrature 
onserves the algorithmi
 totalenergy.The proof rests upon the following lemmas.Lemma 4.3 The algorithmi
 total energy 
al
ulated by the 
G(1) method asso
iated with quadrature readsH2 = �2H0, where � denotes the spe
tral radius of the ampli�
ation matrix.Proof. Using quadrature to approximate the integral of the general 
G(1) method (38), the ampli�
ationmatrix of the arising time-stepping s
heme is given byA1 = 11+�22 
2 " (1+�1 �2
2) I hnm (�1+�2) Ihn 
 (�1+�2) I (1+�1 �2
2) I # ; (57)where we have introdu
ed �i := NqXl=1 Mi(�l)wl; i = 1(1)k+1: (58)Regarding the ampli�
ation matrix (57), the 
onstituent matri
es also take the form of the matri
es (54),so that by Lemma 4.1 the algorithmi
 total energy reads H2 = 12 �2 zT0H z0 = �2H0, whereby H0=H1 forthe 
G(1) method owing to equation (13). 12



Lemma 4.4 The ampli�
ation matrix of the 
G(1) method asso
iated with symmetri
 quadrature has asquared spe
tral radius equal to one, that is, �2 = 1.Proof. The squared spe
tral radius �2 
orresponding to the ampli�
ation matrix (57) is given by�2 = 1 + �21
21 + �22
2 : (59)A

ordingly, �2 = 1 leads to the following restri
tion on the quadrature rules:�21 = �22 : (60)Considering the de�nition of the f�ig2i=1 in equation (58), the restri
tion takes the form:NqXl=1 (1� 2�l)wl = 0; (61)Taking into 
onsideration De�nition 4.1, one obtainsNqXl=1 (1� 2�l)wl = �Xl=0 2 �1� �1+l � �Nq�l�w1+l = 0; (62)where � = int(Nq=2). Consequently, for arbitrary weights the parentheses have to vanish separately, whi
his ful�lled by symmetri
 quadrature. Therefore, symmetri
 quadrature renders �2=1.Proof of Proposition 4.2 By Lemma 4.3 the algorithmi
 
onservation 
ondition is �2=1. This 
onditionis ful�lled by symmetri
 quadrature in view of Lemma 4.4. Consequently, symmetri
 quadrature 
onservesthe total energy of the 
G(1) method algorithmi
ally.Corollary 4.1 The midpoint rule preserves the algorithmi
 total energy 
omputed with the 
G(1) method.Proof. The midpoint rule is a

ording to De�nition 4.1 a symmetri
 one-point quadrature rule. By Proposi-tion 4.2 the algorithmi
 total energy determined by the 
G(1) method is preserved for symmetri
 quadrature;see Figure 4.2.Proposition 4.3 The algorithmi
 total energy determined by the dG(1) method asso
iated with exa
t quadra-ture de
ays, that is, H2<H0.The proof relies on the following lemmas.Lemma 4.5 The algorithmi
 total energy H2 determined by the dG(1) method asso
iated with exa
t quadra-ture is given by H2=�2H0, where � denotes the spe
tral radius of the ampli�
ation matrix.Proof. Consider the general dG(1) method (30), (31) in 
onjun
tion with the Ja
obian (46) and exa
tlyevaluated integrals. The elimination of the internal node z1 leads to a two-level s
heme with the ampli�
ationmatrix A1 = �2
4+4
2+36" (7
2�18) I hnm (
2�18) Ihn 
 (
2�18) I (7
2�18) I # : (63)The 
onstituent matri
es A1;1, A1;2 pertaining to the ampli�
ation matrix (63) and the matri
es (54) of the
G(1) method are identi
al. Hen
e the algorithmi
 total energy at the node 2 is a

ording to Lemma 4.1given by H2=�2H0. 13



Lemma 4.6 The ampli�
ation matrix of the dG(1) method asso
iated with exa
t quadrature has a squaredspe
tral radius being less than one, that is, �2 < 1.Proof. The eigenvalues of the ampli�
ation matrix (63) read�1 = �3 = �5 = �2 7
2 � 18 + i
 �
2 � 18�
4 + 4
2 + 36 ; �2 = �4 = �6 = �1 = �3 = �5; (64)where i denotes the imaginary unit; also see Hulbert [13℄ and Ruge [18℄. Thus, the squared spe
tral radius�2 = �1�2 is given by �2 = 4
2 + 36
4 + 4
2 + 36 : (65)Sin
e the denominator is larger than the numerator for all sampling frequen
ies 
 6= 0, the squared spe
tralradius �2 is less than one.Proof of Proposition 4.3 By Lemma 4.6 the squared spe
tral radius is less than one, so that thealgorithmi
 total energy de
ays in view of Lemma 4.5; see Figure 4.1.Proposition 4.4 Considering symmetri
 quadrature, only one quadrature point preserves the algorithmi
total energy 
omputed with the dG(1) method. In all other 
ases the algorithmi
 total energy de
ays.The proof rests upon the following lemmas.Lemma 4.7 The algorithmi
 total energy 
al
ulated by the dG(1) method asso
iated with quadrature readsH2 = �2H0, where � denotes the spe
tral radius of the ampli�
ation matrix.Proof. Consider the general dG(1) method (30), (31). Employing the Ja
obian (46) and approximatingthe integral by using quadrature, one obtains�121��12hnJH�z2+�121��11hnJH�z1 � z0 = 0; (66)�121��22hnJH�z2 ��121+�12hnJH�z1 = 0; (67)where �ij = NqXl=1 Mi(�l)Mj(�l)wl; i; j = 1(1)k+1: (68)Be
ause of the 
ompli
ated terms, we omit an expli
it representation of the ampli�
ation matrix. The
onstituent matri
es pertaining to the time-stepping s
heme (66), (67) are identi
al with the matri
es (54)of the 
G(1) method. Therefore, the algorithmi
 total energy is, in view of Lemma 4.1, given by H2 = �2H0.Lemma 4.8 Applying symmetri
 quadrature to the dG(1) method, only one quadrature point 
an lead to asquared spe
tral radius of the respe
tive ampli�
ation matrix being equal to one, that is, �2 = 1. In all other
ases �2 < 1 holds.Proof. The squared spe
tral radius 
orresponding to the time-stepping s
heme (66), (67) reads�2 = 1+4�212
21+4�212
2+(�22��11)2
2+4 (�212��11�22)2
4 : (69)Consequently, for sampling frequen
ies 
 6= 0 the squared spe
tral radius is equal to one if�11 = �22; (70)�212 = �222: (71)14
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analyticalFigure 4.1 Total energy H=H(t) of an isotropi
 harmoni
 os
illator with mass m=2, total energy H=0:25 andpotential 
onstant 
=�0:25. Computed with the 
G(1) and dG(1) method with hn=1.Otherwise the squared spe
tral radius is less than one for 
 6= 0. The relation (70) is equivalent to equation(60), so that symmetri
 quadrature satis�es 
ondition (70). Moreover, 
onsidering symmetri
 quadrature,equation (71) leads toNqXl=0 �l (1� 2�l)wl = �Xl=0 ��1 + 4�1+l � 4�21+l�w1+l = �Xl=0(�4)�12 � �1+l�2 w1+l = 0; (72)where � = int(Nq=2). To ful�ll equation (72) for arbitrary weights the parentheses have to vanish separately.Therefore, one �nds that solely one quadrature point at �= 1=2 ful�lls equation (70) as well as equation(71).Proof of Proposition 4.4 A

ording to Lemma 4.7, algorithmi
 total energy 
onservation demands�2=1. Taking into a

ount Lemma 4.8, the algorithmi
 total energy 
onservation is only given by applyingsymmetri
 one-point quadrature.Corollary 4.2 The midpoint rule preserves the algorithmi
 total energy 
omputed with the dG(1) method.Proof. By De�nition 4.1, the midpoint rule is a symmetri
 one-point quadrature rule. Hen
e, a

ording toProposition 4.4 the algorithmi
 total energy determined by the dG(1) method is preserved; see Figure 4.2.Figure 4.3 demonstrates a 
omparison of the spe
tral radii pertaining to the dG(1) method asso
iated withspe
i�
 quadrature rules. We are able to see that the quadrature in
uen
es the frequen
y region in whi
hthe spe
tral radius � has a strong slope. A

ordingly, the applied quadrature a�e
ts the frequen
y range ofnumeri
al dissipation.4.2.3 The algorithmi
 total angular momentumConsider the isotropi
 harmoni
 os
illator. This subse
tion deals with the total angular momentum L of aparti
le of mass m.Referring to Subse
tion 2.4, the total angular momentum L is de�ned as L= r � P . By Remark 4.2,the use of Cartesian 
oordinates leads to the total angular momentum determined by L = q � p. However,within our 
omputational setting, we are interested in the algorithmi
 total angular momentum Lk+1, givenby Lk+1 = qk+1 � pk+1; (73)where the index indi
ates the value at the k+1 node of the master element I� pertaining to our Galerkin�nite element dis
retization. 15
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analyticalFigure 4.2 Total energy H=H(t) of an isotropi
 harmoni
 os
illator with mass m=2, total energy H=0:25 andpotential 
onstant 
=�0:25. Computed with the 
G(1) and dG(1) method asso
iated with the midpoint rule (Nq=1)and with a time step size hn=0:1.Remark 4.9 Owing to equation (13), L0=L1 for the 
G(k) method.Proposition 4.5 Considering exa
t quadrature or quadrature, the algorithmi
 total angular momentum L2determined by the 
G(1) or the dG(1) method is given by L2=�2L0, where � denotes the spe
tral radius ofthe respe
tive ampli�
ation matrix.Proof. To obtain the generalized 
oordinate ve
tor qk+1 and the generalized momentum ve
tor pk+1 independen
e of the initial values q0 and p0, we 
onsider the two-level s
heme (48) in 
onjun
tion with theampli�
ation matrix (49). The minimal polynomial of the isotropi
 harmoni
 os
illator has two distin
troots (Nm=2), so that we get the two-level s
heme zk+1 =P2i=1 �iAk;i z0. However, the determination ofthe algorithmi
 total angular momentum requires leaving the symple
ti
 notation:� qk+1pk+1 � = 2Xi=1 �i " A(1;1)k;i A(1;2)k;iA(2;1)k;i A(2;2)k;i # � q0p0 � ; (74)where the matri
es fA(l;m)k;i g2l;m=1 2Mndof (C ) denote the four ndof�ndof blo
ks of the 
onstituent matrixAk;i2M2ndof (C ), i=1(1)2.For the 
G(1) method as well as for the dG(1) method, one obtains the 
onstituent matri
es (54) byapplying exa
t quadrature as well as quadrature, so that the blo
ks of the 
onstituent matri
es have theform A(l;m)1;i = a(l;m)1;i I . Thus expansion of the matri
es on the right side and introdu
tion of an expli
itrepresentation leads to the following two equations:q2 =P2i=1 �i a(1;1)1;i q0 +P2i=1 �i a(1;2)1;i p0;p2 =P2i=1 �i a(2;1)1;i q0 +P2i=1 �i a(2;2)1;i p0: (75)We employ the equations (75) in the equation (73) and obtain after a simpli�
ationL2 = 2Xi;j=1 �i �j �a(1;1)1;i a(2;2)1;j � a(1;2)1;i a(2;1)1;j � L0: (76)The 
oeÆ
ients of the 
onstituent matri
es (54) pertaining to the main diagonal blo
ks are identi
al one half,that is, a(l;l)1;i =1=2, l = 1(1)2, and the 
oeÆ
ients pertaining to the o�-diagonal blo
ks satisfy the identitiesa(1;2)1;i a(2;1)1;j 6=i=�1=4 and a(1;2)1;i a(2;1)1;j=i=1=4, so that L2 = �2L0, where �2=�1 �2 denotes the squared spe
tralradius. 16
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Figure 4.3 Spe
tral radii of the dG(1) method asso
iated with spe
i�
 symmetri
 quadratures.Corollary 4.3 The algorithmi
 total angular momentum 
al
ulated with the 
G(1) method asso
iated withexa
t quadrature is preserved.Proof. A

ording to Lemma 4.2, the squared spe
tral radius of the 
G(1) method asso
iated with exa
tquadrature is equal to one. A

ordingly, by Proposition 4.5 the algorithmi
 total angular momentum ispreserved in the sense that L2=L0=L1; see Figure 4.4.Corollary 4.4 The algorithmi
 total angular momentum 
al
ulated with the 
G(1) method asso
iated withsymmetri
 quadrature is preserved.Proof. By Lemma 4.4 the squared spe
tral radius of the ampli�
ation matrix pertaining to the 
G(1)method asso
iated with symmetri
 quadrature is given by �2 = 1. A

ording to Proposition 4.5, �2 = 1implies algorithmi
 total angular momentum 
onservation.Corollary 4.5 The algorithmi
 total angular momentum determined by the dG(1) method asso
iated withexa
t quadrature de
ays, that is, L2<L0.Proof. In view of Lemma 4.6, applying exa
t quadrature to the dG(1) method furnishes a squared spe
tralradius being less than one, so that a

ording to Proposition 4.5 the algorithmi
 total angular momentumde
ays; see Figure 4.4.Corollary 4.6 Considering the dG(1) method asso
iated with symmetri
 quadrature, solely one quadraturepoint preserves the algorithmi
 total angular momentum. In all other 
ases the algorithmi
 total angularmomentum de
ays.Proof. With regard to Proposition 4.5, the algorithmi
 total angular momentum de
ays if the squaredspe
tral radius �2 is less than one and is preserved if �2=1 is ful�lled. By Lemma 4.8 only one symmetri
quadrature point satisfying �2 = 1, in all other 
ases �2 < 1 holds, so that the algorithmi
 total angularmomentum de
ays.Corollary 4.7 The 
G(1) method asso
iated with the midpoint rule preserves the algorithmi
 total angularmomentum. 17



0 5 10 15 20

0.702

0.704

0.706

0.708

The isotropic harmonic oscillator, h
n
=1, T=18

time

to
ta

l a
ng

ul
ar

 m
om

en
tu

m
 c

om
po

ne
t L

z

cG(1) method
dG(1) method
analyticalFigure 4.4 The nonvanishing total angular momentum 
omponent L�=L�(t), where the �-axis is perpendi
ular tothe plane of motion, of an isotropi
 harmoni
 os
illator with mass m=2, total energy H=0:25 and potential 
onstant
=�0:25. Computed with the 
G(1) and dG(1) method with a time step size hn=1.Proof. The midpoint rule is a

ording to De�nition 4.1 a symmetri
 one-point quadrature rule. Therefore,by Corollar 4.4 the 
G(1) method preserves the total angular momentum; see Figure 4.5.Corollary 4.8 The dG(1) method asso
iated with the midpoint rule preserves the algorithmi
 total angularmomentum.Proof. By De�nition 4.1, the midpoint rule is a symmetri
 one-point quadrature rule. Therefore, a

ordingto Corollar 4.6 the total angular momentum determined by the dG(1) method is preserved; see Figure 4.5.4.3 Arbitrary 
entral for
e laws4.3.1 The HamiltonianOwing to equation (42), the Hamiltonian of the one-body 
entral for
e problem readsH(q;p) = 12m pT I p+ V (r); (77)where r=pqT I q denotes the magnitude of the radius ve
tor r. Consequently, the Ja
obian DH(z) takesthe form DH = " �qV1m I p # = " �f(r) �qr1m I p # = " � f(r)r I q1m I p # ; (78)where f(r) = �dV (r)=dr indi
ates the magnitude of the 
onservative 
entral for
e a

ording to equation(39). Hen
e it follows that the Ja
obian matrix DH(z) 
an be written asDH(z) =H(z) z; (79)where H(z) = " � f(r)r I OO 1m I # : (80)18
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analyticalFigure 4.5 The nonvanishing total angular momentum 
omponent L�=L�(t), where the �-axis is perpendi
ular tothe plane of motion, of an isotropi
 harmoni
 os
illator with mass m=2, total energy H=0:25 and potential 
onstant
=�0:25. Computed with the 
G(1) and dG(1) method asso
iated with the midpoint rule (Nq=1) and with a timestep size hn=0:1.4.3.2 The algorithmi
 total energy 
onservationProposition 4.6 The 
G(1) method asso
iated with symmetri
 one-point quadrature only 
onserves thealgorithmi
 total energy by employing parti
ular weights.Proof. A

ording to Se
tion 3.3 we a
hieve algorithmi
 total energy 
onserving time-stepping s
hemes bythe general 
G(k) method if the quadrature satis�es the Fundamental Theorem of Cal
ulus, that is, theapplied quadrature has to ful�ll equation (23) whi
h is equivalent toZ 10 ��qH � q0 + �pH � p0� d� = H(�)j�=1�=0: (81)We 
onsider natural systems, therefore equation (81) 
an be written asZ 10 �qV � q0d�� V (�)j�=1�=0 = T (�)j�=1�=0 � Z 10 �pT � p0d�: (82)Now if the Fundamental Theorem of Cal
ulus is satis�ed for the potential energy V as well as for the kineti
energy T , both sides of equation (82) vanish and therefore equation (81) is identi
ally ful�lled. By exa
tquadrature the Fundamental Theorem of Cal
ulus is always ful�lled, however, quadrature does not ful�llthe Fundamental Theorem of Cal
ulus in general.Let us 
onsider the 
G(1) time-stepping s
heme (37) emanating from symmetri
 quadrature with onequadrature point. We employ the Ja
obian (79) and quit the symple
ti
 notation. Ultimately, we obtainq2 � q1 � hnm wp ph(12) = 0; (83)p2 � p1 � hn wq f(rh(1=2))rh(1=2) qh(12) = 0: (84)As aforementioned, the 
ondition for algorithmi
 total energy 
onservation is the ful�llment of the Funda-mental Theorem of Cal
ulus for the potential energy V as well as for the kineti
 energy T . Therefore, theweights wq and wp are determined su
h that this 
onditions hold; see Bets
h and Steinmann [4℄.With regard to the Ja
obian (79), the 
onditions readT2 � T1 = Z 10 1m ph � �ph�0 d�; (85)V2 � V1 = � Z 10 f(rh)rh qh � �qh�0 d�: (86)19



Considering linear time �nite elements, employing the trial fun
tion ph=P2i=1Mi pi, where M1=1�� andM2=� are the nodal shape fun
tions, in equation (85) and applying symmetri
 one-point quadrature, oneobtains after expanding T2 � T1 = wp � 12m pT2 p2 � 12m pT1 p1� : (87)On a

ount of the identity H = T+V in 
onjun
tion with equation (77), equation (87) 
an be written asT2�T1 = wp (T2 � T1). Therefore, the Fundamental Theorem of Cal
ulus for the kineti
 energy T is ful�lledby wp=1, that is, the midpoint rule.Next we employ the trial fun
tion qh = P2i=1Mi qi in equation (86) and get after using symmetri
one-point quadrature V2 � V1 = �wq f(rh(1=2))2 rh(1=2) �r22 � r21� ; (88)where r2=q � q has been taken into a

ount. Hen
e it follows that we obtain the weightwq = �V2 � V1r22 � r21 2 rh(1=2)f(rh(1=2)) : (89)The determined weights wp and wq yield the following time-stepping s
heme:q2 � q1 � hn2m (p1 + p2) = 0; (90)p2 � p1 + hn V2 � V1r22 � r21 (q1 + q2) = 0: (91)Notation 4.2 A

ording to Bets
h and Steinmann [4℄, we refer to the symmetri
 one-point quadrature withthe weights wp = 1 and wq from equation (89) as the modi�ed midpoint rule.Now 
onsider the time-stepping s
heme (90), (91). First we s
alar multiply equation (91) with (q2�q1).Then, taking into a

ount the identity r2=q � q, one obtains(p2 � p1) � (q2 � q1) + hn (V2 � V1) = 0: (92)Next, we employ equation (90) in equation (92) and 
onvert the result su
h thathn� 12m pT2 p2 � 12m pT1 p1�+ hn (V2 � V1) = 0: (93)With regard to equation (87), where wp=1, for a nonvanishing time step size hn the equation (93) leads toH2=H1, that is, algorithmi
 total energy 
onservation of the 
G(1) method; see Figure 4.6.Corollary 4.9 The algorithmi
 total energy determined by the dG(1) method asso
iated with the modi�edmidpoint rule is 
onserved.Proof. With regard to Proposition 3.2 the general dG(1) method leads to a 
G(1) time-stepping s
heme byusing one quadrature point at �=1=2, that is, applying a symmetri
 one-point quadrature (see Remark 4.6).By Proposition 4.6 the modi�ed midpoint rule preserves the algorithmi
 total energy of the 
G(1) method;see Figure 4.6.4.3.3 The algorithmi
 total angular momentum 
onservationWith regard to equation (73) the algorithmi
 total angular momentum for linear time �nite elements is givenby L2 = q2 � p2: (94)20
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analyticalFigure 4.6 Total energy H =H(t) of the potential V = 12 
 �r2 � 1�2 with mass m=2, total energy H =6000 andpotential 
onstant 
=1000. Computed with the 
G(1) and dG(1) method asso
iated with midpoint rule as well asmodi�ed midpoint rule (m.m.r). That is, Nq=1. The time step size hn is 0:01.Proposition 4.7 Considering the 
G(1) method asso
iated with symmetri
 quadrature, only a symmetri
one-point quadrature preserves the total angular momentum of the 
G(1) method algorithmi
ally, that is,L�=0=L�=1, for all 
entral for
e laws f(r).We prove Proposition 4.7 by the following lemma.Lemma 4.9 The algorithmi
 total angular momentum 
al
ulated with the 
G(1) method asso
iated withquadrature 
an be written as L2=L1+hnN2, where hn denotes the time step size and N 2 a ve
tor.Proof. Consider the general 
G(1) method (38). Taking the Ja
obian (79) in a

ount and leaving thesymple
ti
 notation, one obtains q2 � q1 � hnm Z 10 phd� = 0; (95)p2 � p1 � hn Z 10 f(rh)rh qhd� = 0: (96)Employing the linear trial fun
tions and introdu
ing simultaneously quadrature, one obtains R 10phd� �P2i=1 �i pi and R 10 f(rh)rh qhd� �P2i=1 �i qi, respe
tively, where�i := � NqXl=1 Mi(�l) f(rh(�l))rh(�l) wl; i = 1(1)k+1: (97)A

ordingly, one obtains the following time-stepping s
heme:q2 � q1 � hnm (�1 p1 + �2 p2) = 0 (98)p2 � p1 + hn (�1 q1 + �2 q2) = 0 (99)At �rst we take the 
ross produ
t with p2 from the right on both sides of equation (98). The 
onsiderationof equation (94) renders the following algorithmi
 total angular momentum:L2 = q1 � p2 + hnm �1 p1 � p2: (100)Next, ve
tor multipli
ation from the left of both sides of equation (99) with q1 furnishesq1 � p2 = L1 � hn �2 q1 � q2; (101)21



where the identity L1=q1 � p1 has been used. Now an elimination of p2 in the time-stepping s
heme (98),(99) and a subsequently ve
tor multipli
ation of the resulting equation with p2 leads tohnm p1 � p2 = hn �1 + �2�1 + �2 q1 � q2: (102)Finally, employing the equations (101) and (102), equation (100) yields the following relation for the algo-rithmi
 total angular momentum: L2 = L1 + hnN 2; (103)where N 2 = �1 �1 � �2 �2�1 + �2 q1 � q2: (104)Remark 4.10 Equation (103) 
an be related to the rate of 
hange (4) of the total angular momentum. Oneobtains �(1) = N2, where �(1) = 1hn (L2 �L0) denotes the �rst divided forward di�eren
e of the totalangular momentum L(�) of the master element I�; see Hildebrand [9℄. Thus we may interprete �(1) =N 2as the algorithmi
 
ounterpart of the rate of 
hange (4) of the total angular momentum.Notation 4.3 Due to Remark 4.10, we generally refer to Nk+1 as the algorithmi
 total torque of the 
G(k)and dG(k) method, respe
tively.Proof of Proposition 4.7 By Lemma 4.9, the 
ondition for the 
onservation of the algorithmi
 totalangular momentum L2, in the sense that L2 =L1, is N2 = 0. Be
ause of the integrals in the algorithmi
total torque N 2, whi
h are approximated by quadrature, we may interprete the 
ondition N 2 = 0 as arestri
tion on the positions of the quadrature points f�igNqi=1.By equation (104) the 
onservation 
ondition reads (�1 �1 � �2 �2) q1 � q2 = 0. If the 
entral for
evanishes (f(r) = 0) then (i) the f�1g2i=1 are vanishing and (ii) the orbit is a line whi
h implies q2 = a q1,a2R, so that the 
ross produ
t q1�q2 vanishes. For f(r) 6=0 the 
ross produ
t q1�q2 is not vanishing ingeneral. Therefore, the 
onservation 
ondition is redu
ed to (�1 �1 � �2 �2) = 0.Taking into a

ount the de�nitions (58) and (97) of the 
oeÆ
ients f�igk+1i=1 and f�igk+1i=1 , respe
tively, andthe nodal shape fun
tions (11), we obtain the following 
ondition for algorithmi
 total angular momentum
onservation: NqXl;L=1l6=L (1� �l � �L) f(rh(�L))rh(�L) wl wL + NqXl=1 (1� 2�l) f(rh(�l))rh(�l) w2l = 0: (105)Considering symmetri
 quadrature, by the relations M1(�Nq�i) = M2(�1+i) and M2(�Nq�i) = M1(�1+i),i = 0(1)int([Nq�1℄=2), only the parentheses of the pairs (�Nq�i; �1+i) vanish. Consequently, for an arbitrary
entral for
e law f(r) as well as for arbitrary weights, equation (105) is ful�lled if �1 = �2 = : : : = �Nq = 1=2.Therefore, only one quadrature point at �=1=2, that is, symmetri
 one-point quadrature, leads to algorith-mi
 total angular momentum 
onservation; see Bets
h and Steinmann [4℄.Remark 4.11 A symmetri
 one-point quadrature satis�es the auxiliary 
ondition �1+�2 6=0.Corollary 4.10 The algorithmi
 total angular momentum determined by the 
G(1) method asso
iated withthe midpoint rule or the modi�ed midpoint rule is 
onserved.Proof. The symmetri
 one-point quadrature in
ludes the midpoint rule as well as the modi�ed midpointrule. A

ordingly, the 
G(1) method asso
iated with the midpoint rule or the modi�ed midpoint rule 
on-serves the algorithmi
 total angular momentum in view of Proposition 4.7; see Figure 4.7.22



Proposition 4.8 Considering the dG(1) method asso
iated with symmetri
 quadrature, solely one quadra-ture point preserves the algorithmi
 total angular momentum of the dG(1) method for all 
entral for
e lawsf(r).To prove Proposition 4.8 we use the following lemma.Lemma 4.10 The algorithmi
 total angular momentum L2 
omputed with the dG(1) method asso
iated withquadrature is given by L2=L0+hnN 2, where hn denotes the time step size and N 2 the algorithmi
 totaltorque.Proof. Consider the general dG(1) method (30), (31). The determination of the algorithmi
 total angularmomentum demands the expli
it representation of the general dG(1) method:12 q2 + 12 q1 � q0 � hnZ 10M1(�) �pH(�)d� = 0; (106)12 p2 + 12 p1 � p0 + hnZ 10M1(�) �qH(�)d� = 0; (107)12 q2 � 12 q1 � hnZ 10M2(�) �pH(�)d� = 0; (108)12 p2 � 12 p1 + hnZ 10M2(�) �qH(�)d� = 0: (109)Taking the trial fun
tions ph(�) =P2j=1Mj(�)pj and qh(�) =P2j=1Mj(�) qj as well as quadrature into
onsideration, one obtains the following time-stepping s
heme:12 q2 + 12 q1 � q0 � hnm 2Xj=1 �1j pj = 0; (110)12 p2 + 12 p1 � p0 + hn 2Xj=1 �1j qj = 0; (111)12 q2 � 12 q1 � hnm 2Xj=1 �j2 pj = 0; (112)12 p2 � 12 p1 + hn 2Xj=1 �j2 qj = 0; (113)where �ij := � NqXl=1 Mi(�l)Mj(�l) f(rh(�l))rh(�l) wl; i = 1(1)k+1: (114)With regard to the de�nition (114), the 
oeÆ
ients �ij are symmetri
, that is, �ij = �ji. A

ording to thede�nition (68), the 
oeÆ
ients �ij are also symmetri
. This symmetry has been taken into a

ount in theequations (112) and (113).Firstly, add equation (110) and equation (112) and use the identity �i=�i1 + �i2, where �i is de�ned byequation (58), in a

ordan
e with the relation M1+M2=1 of the nodal shape fun
tions. On the other hand,add the equations (111) and (113) and use the relation �i=�i1 + �i2, also due to M1+M2=1. The f�igk+1i=1are de�ned by equation (97).One obtains the algorithmi
 total angular momentum L2 by employing both relations just determined inequation (94): L2 = L0+hnm �1p1�p0 � hn�q0+hnm �1p1�� 2Xj=1 �j qj ; (115)where use has been made of the identity L0=q0�p0.23



Employing the di�eren
e of equation (113) and equation (111) in the middle term of equation (115), leadsto L2=L0 � hn q0 � 2Xj=1 �j qj � 2h2nm �1 p1 � 2Xj=1 �j2 qj : (116)The generalized momentum ve
tor p1 in the last term of equation (116) 
an be repla
ed by the 
ombinationof equation (113) with the sum of the equations (110) and (112). Ultimately, the algorithmi
 total angularmomentum is given by L2 = L0 + hnN 2; (117)where N2 = �1 � �2�1 + �2 (�12 (q0 � q2)� q1 + �22 q0 � q2) + �12 (q1 � q0)� q2 + �11 q1 � q0: (118)Proof of Proposition 4.8 By Lemma 4.10 the 
onservation 
ondition is the vanishing algorithmi
 totaltorque N2. A

ordingly, we have to �nd quadrature points f�lgNqi=1 satisfying the equation N2 = 0. The�rst term vanishes for an arbitrary 
entral for
e law only if �1 = �2. Taking into 
onsideration the nodalshape fun
tions and symmetri
 quadrature, one obtainsNqXl=1 (1� 2�l)wl = �Xl=0 2 �1� �1+l � �Nq�l�w1+l = 0; (119)where � = int(Nq=2). Consequently, for arbitrary weights the parentheses have to vanish separately, whi
his ful�lled by symmetri
 quadrature.The last two terms vanish for an arbitrary 
entral for
e law only if q0 = q1, that is, a vanishing jump[[qh℄℄. By the di�eren
e of the equation (110) and (112) the jump vanishes solely if �i2 = �i1, i = 1(1)2.Taking symmetri
 quadrature and the nodal shape fun
tions into a

ount, both 
onditions lead to�Xl=0 �12 � �1+l�2w1+l = 0; (120)where �=int(Nq=2). For arbitrary weights the parentheses have to vanish, so that �1=�2= : : :=�Nq =1=2is the solution. Therefore, only a symmetri
 one-point quadrature preserves the algorithmi
 total angularmomentum for an arbitrary 
entral for
e law.Corollary 4.11 The algorithmi
 total angular momentum determined by the dG(1) method asso
iated withthe midpoint rule or the modi�ed midpoint rule is 
onserved.Proof. Sin
e the symmetri
 one-point quadrature in
ludes the midpoint rule as well as the modi�ed mid-point rule, the algorithmi
 total angular momentum determined by the dG(1) method asso
iated with themidpoint rule or the modi�ed midpoint rule is 
onserved a

ording to Proposition 4.8; see Figure 4.7.Corollary 4.12 Considering the dG(1) method asso
iated with symmetri
 quadrature, only a 
ontinuoussolution, that is, [[zh℄℄ = 0, preserves the algorithmi
 total angular momentum for all 
entral for
e laws f(r).Proof. A

ording to Proposition 4.8, only a symmetri
 one-point quadrature preserves the total angu-lar momentum algorithmi
ally. Furthermore, owing to Proposition 3.2 a symmetri
 one-point quadratureapplied to the general dG(1) method furnishes a 
G(1) time-stepping s
heme with a 
ontinuous solution,that is, z0 = z1. Consequently, only a 
ontinuous solution leads to algorithmi
 total angular momentum
onservation for an arbitrary 
entral for
e law in the sense that L�=0=L�=1.24
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analyticalFigure 4.7 The nonvanishing total angular momentum 
omponent L�=L�(t), where the �-axis is perpendi
ular tothe plane of motion, of the potential V = 12 
 �r2 � 1�2 with mass m=2, total energy H=6000 and potential 
onstant
=1000. Computed with the 
G(1) and dG(1) method asso
iated with midpoint rule as well as modi�ed midpointrule (m.m.r). That is, Nq=1. The time step size hn is 0:01.5 Con
lusionsThe 
ontinuous Galerkin 
G(k) method for holonomi
 me
hani
al systems, investigated by Bets
h and Stein-mann [3, 4, 5℄, was 
ompared to the dis
ontinuous Galerkin dG(k) method. In 
ontrast to the inherent energy
onservation of the 
G(k) method, the dG(k) method a
hieves energy non
onservation in general. Energydissipation of the dG(k) method has been shown for (i) k=0 in 
onjun
tion with arbitrary potentials V and(ii) arbitrary k in the 
ase of quadrati
 potentials V . Furthermore, we have shown that 
G(1) time-steppings
hemes 
an be derived from the dG(1) method by applying one quadrature point at the midpoint of themaster element (redu
ed integration).Considering quadrati
 potentials V , a relationship between the algorithmi
 
onservation properties andthe spe
tral radius of the ampli�
ation matrix pertaining to the 
G(1) and dG(1) time-stepping s
hemes,respe
tively, emanating from exa
t as well as numeri
al quadrature, was derived. This relationship demon-strates the in
uen
e of numeri
al quadrature on the algorithmi
 
onservation properties.For arbitrary potentials V a quadrature rule, namely the modi�ed midpoint rule, was presented whi
hpreserves the algorithmi
 total energy and angular momentum of the dG(1) method. A

ordingly, algorithmi

onservation is only possible for 
ontinuous approximations, that is, when the dG(1) method degenerates tothe 
G(1) method by employing one quadrature point at the midpoint of the master element.We refer to Tables 5.1 for an overview of the numerous results.
G(1) Hooke's potential Arbitrary potentialsexa
t sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1H C C C C�exa
t sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1L C C C C NC

dG(1) Hooke's potential Arbitrary potentialsexa
t sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1H D C D C�exa
t sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1L D C D C NCTable 5.1 On the left and right, the algorithmi
 
onservation properties of the 
G(1) and dG(1) method, respe
tively,are depi
ted. `C' denotes 
onservation, `D' denotes de
ay, `C�' denotes 
onservation only with modi�ed midpoint ruleand `NC' denotes non
onservation. An empty box signi�es the absen
e of a 
orresponding eviden
e or 
ountereviden
e.25
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