
Comparison of Galerkin Methods applied to Classial MehanisM. Gro�, P. Betsh and P. SteinmannAbstrat. In this paper we ompare two Galerkin �nite element methods in time whih use ontinuous anddisontinuous pieewise polynomials for trial and test funtions. We apply both methods for approximatingthe solution of Hamilton's anonial equations. Considering natural systems, we investigate the algorithmionservation properties of both methods for linear time �nite elements applied to the one-body entralfore problem. In this ontext, we present quadrature rules leading to algorithmi total energy and angularmomentum onservation, respetively.Keywords. Galerkin method, �nite element method, initial value problem, Hamilton's anonial equations,onservation laws, quadrature.1 IntrodutionIn the present paper we ompare the algorithmi onservation properties of the disontinuous Galerkin (dG)method with those of the ontinuous Galerkin (G) method for natural mehanial systems.In partiular, we onsider autonomous natural Hamiltonian systems and use the two di�erent Galerkinmethods for solving Hamilton's anonial equations pertaining to the one-body entral fore problem. There-fore, the onservation of total energy as well as total angular momentum is treated. The dG method anbe traed bak to Lasaint and Raviart [15℄, see also the book of Eriksson et al. [6℄. For the G method,usually aredited to Hulme [14℄, see also Eriksson et al. [6℄, the algorithmi onservation properties havebeen examined in Betsh and Steinmann [3, 4, 5℄.Sine the exat alulation of the time integrals appearing in the G and dG method is rarely feasible,we investigate the inuene of spei� quadrature rules on the algorithmi onservation properties of bothmethods.An outline of the paper is as follows. In Setion 2, we begin by realling the de�nition of a natural systemand Hamilton's anonial equations. Subsequently, we give a review of the onservation laws prevailing inthe systems we onsider; see Arnold [1℄. Firstly, we point out the total energy onservation in naturalsystems and thereafter, we review the law of onservation of total angular momentum pertaining to onlyone partile in aordane with Goldstein [8℄. Setion 3 ontains the underlying initial value problem to besolved. Then, after we have presented the ontinuous as well as the disontinuous Galerkin �nite elementapproximation of Hamilton's anonial equations, we point out that the ontinuous Galerkin �nite elementmethod inherently onserves an autonomous Hamiltonian after eah time step (algorithmi onservation).Subsequently, we demonstrate a possibility to prove a deay of the algorithmi Hamiltonian determined bythe disontinuous Galerkin �nite element method provided that partiular onditions hold. We onlude thissetion by demonstrating a relationship between both methods in the ase of linear time �nite elements. InSetion 4, we investigate the algorithmi onservation properties of the ontinuous as well as the disontinuousGalerkin �nite element method for motions of one partile in a three-dimensional entral fore �eld, wherewe restrit ourselves to linear time �nite elements. Firstly, we onsider solely Hooke's entral fore law andthereafter we let the entral fore law be arbitrary. In this onnetion, we point out for arbitrary entralfore laws how algorithmi onservation of total energy and total angular momentum an be obtained byapplying spei� quadrature rules. Conlusions are drawn in Setion 5.2 Hamilton's anonial equations and onservation laws2.1 De�nition of a natural systemLet fqigndofi=1 be a set of independent generalized oordinates of a Lagrangian dynamial system with ndofdegrees of freedom, whih are arranged into the generalized oordinate vetor q :=(qi)ndofi=1 2Rndof . A naturalsystem onsists of a Lagrangian L :=T�V , where the total kineti energy T =T (q; _q) is a positive de�nite1



quadrati form with respet to the generalized veloity vetor _q= dq=dt. Furthermore, V = V (q) denotesthe total potential energy from whih the set of onservative generalized fores fQigndofi=1 are derived byQ=��qV , where Q :=(Qi)ndofi=1 2Rndof denotes the generalized fore vetor.2.2 Hamilton's anonial equationsIn the Hamiltonian approah of dynamis the motion of the system is desribed by 2ndof independentvariables. Thus the equations of motion are in terms of 2ndof �rst-order di�erential equations; see Arnold [1℄.Theorem 2.1 Given a Lagrangian L being onvex with respet to the generalized veloity vetor _q. Then,Lagrange's equation _p=�qL, where p=� _qL, is equivalent to Hamilton's anonial equations, given by_q = �pH; _p = ��qH ; (1)where H is the Legendre transform of the Lagrangian L viewed as a funtion of _q.Proof. Owing to the onvexity of the Lagrangian L, the Legendre transform of L with respet to _q, givenby H(q;p) := sup_q h(q; _q;p); (2)where h(q; _q;p) :=p � _q � L(q; _q), is unique. The new vetor variable p is thus de�ned from the extremalondition � _qh=0 as p := � _qL: (3)The total di�erential of the Hamiltonian H =H(q;p) is equal to the total di�erential of h= h(q; _q;p) forp = � _qL. Taking equation (3) into aount, a omparison of the oeÆients pertaining to the remainingdi�erentials furnishes Hamilton's anonial equations (1). Therefore, Lagrange's equation and Hamilton'sanonial equations are equivalent.Remark 2.1 The salar funtion H(q;p) is alled the Hamiltonian. With regard to de�nition (3), onerefers to the new vetor variable p as the generalized momentum vetor.Remark 2.2 Hamilton's anonial equations desribe the dynamis of the system whih is therefore alledHamiltonian system.Remark 2.3 The onvexity of the Lagrangian L with respet to _q is generally ful�lled for natural systemsowing to the positive de�nite quadrati form of the kineti energy T .2.3 Conservation of the total energy of natural systemsTheorem 2.2 Given a natural Hamiltonian system. If the Hamiltonian H does not depend expliitly ontime, that is, �tH = 0, the total energy is onserved.We prove Theorem 2.2 by two preliminary results represented by the following lemmas; see Arnold [1, 2℄.Lemma 2.1 The Hamiltonian H of a natural system is the total energy of the system, that is, H = T + V .Proof. Owing to the quadrati form with respet to _q, T is homogeneous of degree two. Therefore, Euler'stheorem for homogeneous funtions yields � _qT � _q = 2T . Sine the potential energy V =V (q) depends only onq, one obtains � _qL = � _qT . Aordingly, with equation (3) the funtion h results in h = 2T�(T�V ) = T+Vand thus the Hamiltonian reads H = (T + V )j _q!p.Lemma 2.2 Given an arbitrary Hamiltonian System. If the Hamiltonian H does not depend expliitly ontime (autonomous Hamiltonian system), the Hamiltonian is onserved, that is, H(q;p) = onst.2



Proof. For a system whose Hamiltonian does not depend expliitly on time, Hamilton's anonial equationslead to _H = �pH � (��qH) + �qH � �pH = 0. Therefore, the Hamiltonian H remains onstant.Proof of Theorem 2.2 By Lemma 2.1 the total energy of a natural system is equal to its Hamilto-nian H . Aording to Lemma 2.2, the Hamiltonian H of an autonomous Hamiltonian system is a onstantof the motion. Hene it follows that the total energy of a natural autonomous Hamiltonian system is on-served.2.4 Conservation of the total angular momentum of a partileConsider the motion of a partile of mass m in the three-dimensional Eulidean spae E3 relative to aninertial Cartesian oordinate system with the origin O.We begin by realling some de�nitions:De�nition 2.1 Let P :=m _r denote the total linear momentum of a partile of mass m, where r is theradius vetor of the partile beginning at the origin O.Remark 2.4 Notie that if qi is not a Cartesian oordinate, the orresponding generalized momentum pidoes not neessarily have the dimension of the linear momentum Pi, i=1; 2; : : : ; ndof .Notation 2.1 In the following, we use the briefer notation 1(1)n :=1; 2; : : : ; n, where n2N.De�nition 2.2 The total angular momentum of a partile of mass m about O, denoted by L, is de�ned asL :=r �P :De�nition 2.3 The total torque N about O is the vetor produt N := r � F ; where F = _P is the totalfore.Now let us formulate the law of onservation of total angular momentum asTheorem 2.3 If the total torque N about O vanishes, then the total angular momentum L about O is aonstant of the motion.Proof. We may write the total torque asN = r � ddt (m _r) = ddt (r �m _r)� _r �m _r = _L; (4)where the produt rule of di�erentiation was used. Hene, for a vanishing total torque N the total angularmomentum L is preserved.2.5 Compat formulation of the initial-value problemFor our ensuing onsiderations it proves onvenient to rewrite Hamilton's anonial equations in a moreompat form by introduing the new variable z := (q;p) 2 R2ndof , known as sympleti variable; seeArnold [2℄. On the vetor spae R2ndof a sympleti linear struture is given by a nondegenerate bilinearskew-symmetri 2-form in terms of the skew-salar produt [u;v℄=�[v;u℄, u;v 2 R2ndof ; see Arnold [1, 2℄.The vetor spae R2ndof , together with the sympleti struture [�; �℄, is alled a sympleti vetor spae. Thesympleti basis of R2ndof , denoded by feqi ; epigndofi=1 , is de�ned by [epi ; eqj ℄=Æij and [eqi ; eqj ℄=[epi ; epj ℄=0,i; j=1(1)ndof . The skew-salar produt an be expressed in terms of a salar produt by [u;v℄ := (Ju;v).The matrix of the skew-symmetri operator J with respet to the sympleti basis assumes the form of a2ndof�2ndof hypermatrix J 2M2ndof (R) over R, given byJ := � O I�I O � ; (5)3



where the matries O; I 2Mndof (R) are the ndof�ndof zero and identity matrix, respetively. Aording toArnold [2℄, the hypermatrix J is alled the sympleti unit matrix .Hamilton's anonial equations are now equivalent to Hamilton's equation, given by_z = JDH(z): (6)Remark 2.5 Using the fat that M2ndof (R) is homeomorphi to R(2ndof )2 , in the subsequent disussionwe also regard the sympleti variable z and Hamilton's equation (6) as matrix and system of generallynonlinear equations, respetively. Then, DH(z) is the Jaobian of the Hamiltonian H with respet to z.Supplemented with the initial ondition z(t0)=zt0 , the equation (6) gives rise to the following initial-valueproblem: �nd z : It ! R2ndof suh that� _z(t) = JDH(z(t)) for t0 < t � T;z(t0) = zt0 ; (7)where It :=[t0; t0 + T ℄ is the time interval of interest.To obtain a numerial solution of the initial-value problem (7) on the time interval It, we perform adisretization in time. Therefore, for the given interval It we let t0 < t1 < : : : < tN be a partition intosubintervals In := [tn�1; tn℄ of length hn := tn � tn�1, n=1(1)N . We further introdue a transformation Tnto a master element I� :=[0; 1℄, de�ned byTn : t 7! �(t) := t� tn�1tn � tn�1 = t� tn�1hn : (8)In other words, we substitute the variable � and the di�erential operator d=d� for the time t and thedi�erential operator d=dt=h�1n d=d�, respetively.In view of the �nite element formulations treated next, we onsider the following alternative statementof the initial value problem: �nd z : I� ! R2ndof suh that� z0(�) = hnJDH(z(�)) for 0 < � � 1;z(0) = z0; (9)where the prime indiates di�erentiation with respet to �, that is, (�)0= d(�)=d�.3 Galerkin �nite element formulationsWe fous next on two alternative �nite element formulations for the numerial solution of the initial valueproblem (9). In partiular, the two formulations are based upon the ontinuous and disontinuous Galerkinmethod.3.1 The ontinuous Galerkin G(k) methodLet Pk(0; 1)2ndof denote the spae of 2ndof -dimensional polynomials of degree k on the interval I�. Theontinuous Galerkin approximation of the inital value problem (9) is formulated by: �nd a trial funtionzh 2 Pk(0; 1)2ndof suh that for all test funtions Æzh2Pk�1(0; 1)2ndof ,Z 10JÆzh �h�zh�0 � hnJDH(zh)i d� = 0: (10)We refer to the weighted residual statement (10) as the weak form of the initial-value problem (9); see Betshand Steinmann [3, 4, 5℄.Remark 3.1 Conerning Hamilton's equation (6), the oeÆients of the trial and test funtions are vetorsof the sympleti vetor spae R2ndof with the struture [�; �℄. Therefore the skew-orthogonality of twovetors u;v 2 R2ndof is de�ned by [u;v℄ =Ju � v=0. Aordingly, the Galerkin orthogonality is given bythe weighted residual statement (10). 4



PSfrag replaements 0=1 2 �� = 0 � = 1Figure 3.1 Continuous polynomial approximation (k=1) on the master element I�.As basis of Pk(0; 1)2ndof we use the Lagrange basis fMI(�)gk+1I=1 assoiated to the distint k+1 nodes�1<�2<: : :<�k+1 in I�, whih is determined by the requirement that MI(�J )=ÆIJ , the Kroneker delta.The expliit expression for the basis funtion MI(�) isMI(�) = k+1YJ=1J 6=I �� �J�I � �J ; I = 1(1)k+1: (11)Remark 3.2 By de�nition QJ2; = 1. Therefore, for the ase k = 0 we obtain from equation (11) the nodalshape funtion M1 = 1.Remark 3.3 We refer to Table 3.1 for the Lagrange basis funtions fMI(�)gk+1I=1 of polynomial degreek=0(1)2.Satisfying zI :=zh(�I) at the nodes f�Igk+1I=1, the polynomial zh(�)2Pk(0; 1)2ndof may be expressed interms of the orresponding Lagrange basis aszh(�) = k+1XI=1MI(�) zI ; (12)so that the values fzh(�I)gk+1I=1 are the oeÆients of zh(�) with respet to the Lagrange basis.For global ontinuity of the trial funtions we have to state the following ontinuity ondition at thebeginning of eah time step (ompare with Figure 3.1 and equation (9)):z1 = z0: (13)Notation 3.1 We also refer to the Lagrange basis and the Lagrange basis funtions as the nodal basis andthe nodal shape funtions, respetively.The test funtion Æzh is an element of the spae Pk�1(0; 1)2ndof suh that it takes the form, given byÆzh(�) = kXI=1 ~MI(�) ÆzI ; (14)where ~MI indiates redued shape funtions de�ned by the relation�zh�0 (�) = k+1XI=1M 0I(�) zI =: kXI=1 ~MI(�) ~zI : (15)k = 0 M1 = 1k = 1 M1 = 1� �M2 = �k = 2 M1 = (2�� 1)(�� 1)M2 = �4�(�� 1)M3 = �(2�� 1)Table 3.1 Lagrange basis funtionsMI(�) of polynomial degree k=0(1)2.5



PSfrag replaements 0 1 2 �� = 0 � = 1Figure 3.2 Disontinuous polynomial approximation (k=1) on the master element.Remark 3.4 Note that the test funtion (14) leads to possible disontinuities aross the element boundaries.Remark 3.5 We refer to Table 3.2 for the redued shape funtions f ~MI(�)gkI=1 and the assoiated quantitiesf~zIgkI=1 of polynomial degree k=1(1)2.Notation 3.2 Following the terminology of Eriksson et al. [6℄, we refer to the ontinuous Galerkin �niteelement method just de�ned briey as the ontinuous Galerkin G(k) method.Inserting equations (14) and (15) into the weak form (10), owing to the arbitrariness of the fÆzIgkI=1 oneah subinterval In one obtains the following set of equations (general G(k) method):kXJ=1 Z 10 ~MI ~MJd� ~zJ � hnZ 10 ~MIJDH(zh)d� = 0; (16)for I=1(1)k, where 0 indiates the zero vetor.The k equations (16) represent a family of impliit multi-level one-step shemes of whih a spei�member is obtained by seleting the polynomial degree k as well as a spei� quadrature rule for omputingthe integrals of the generally nonlinear Jaobian DH .3.2 The disontinuous Galerkin dG(k) methodSeondly, we use a Galerkin �nite element method for whih the trial as well as the test funtions aredisontinuous pieewise polynomials of degree k. This method is known as the disontinuous Galerkin dG(k)method ; see Eriksson et al. [6℄. Owing to the degree k of the test funtions, the number of the algebraiequations is inreased by one in ontrast to the ontinuous Galerkin G(k) method.Let the trial spae as well as the test spae be given by Pk(0; 1)2ndof . Further, let the trial funtion zh(�)have the same form as in the ontinuous Galerkin G(k) method, that is, the form given by equation (12).However, let the test funtion have the formÆzh(�) = k+1XI=1MI(�) ÆzI : (17)To prevent that the nodal values fzIgk+1I=1 of the trial funtion are over-determined, one gives up the ontinuityondition (13). For that reason, one generally gets a jump [[zh℄℄ :=z1�z0 6=0 (disontinuity) in the masterelement I�; see Figure 3.2.The weak form of the disontinuous Galerkin method for solving the initial-value problem (9) approxi-mately is as follows: Z 10JÆzh �h�zh�0�hnJDH(zh)i d�+ JÆz1 � [[zh℄℄ = 0: (18)k = 1 ~M1 = 1 ~z1 = z2 � z1k = 2 ~M1 = 1� � ~z1 = �3z1 + 4z2 � z3~M2 = � ~z2 = z1 � 4z2 + 3z3Table 3.2 Redued shape funtions ~MI(�) and assoiated quantities ~zI for polynomial degree k=1(1)2.6



Beause of the presene of the term J Æz1 � [[zh℄℄, the initial ondition is satis�ed weakly.Taking into aount the �nite element approximations (12) and (17), the weak form (18) furnishes thefollowing system of equations (general dG(k) method):k+1XJ=1 Z 10MIM 0Jd� zJ � hnZ 10MIJDH(zh)d�+ Æ1I [[zh℄℄ = 0; (19)for I=1(1)k+1, where we introdued the Kroneker delta Æ1I to express the identity Æz1=Æ1IÆzI .Analogous to the ontinuous Galerkin G(k) method, a spei� time-stepping sheme is de�ned by �xingk and hoosing a spei� quadrature rule for alulating the integrals of DH .3.3 The algorithmi Hamiltonian of the ontinuous Galerkin G(k) methodNotation 3.3 In the following we refer to Hi :=H(zi), i=0(1)k+1, as the algorithmi Hamiltonian or thealgorithmi total energy, respetively, at the ith node of the master element I�.Theorem 3.1 The ontinuous Galerkin G(k) method onserves an autonomous Hamiltonian H algorith-mially.Proof. Consider the weak form (10) of the ontinuous Galerkin G(k) method. Due to the arbitrariness ofthe fÆzIgkI=1, the test funtions may be written asÆzh = (zh)0: (20)Employing equation (20) in equation (10), the weak form takes the formZ 10J�zh�0 � �zh�0 d�� hnZ 10J�zh�0 � JDH(zh)d� = 0: (21)Owing to the skew-symmetry of the sympleti unit matrix J , the �rst term vanishes and moreover, utilizingthe orthogonality of J , one obtains Z 10DH(zh) � �zh�0 d� = 0: (22)On the other hand, the Fundamental Theorem of Calulus states for an autonomous Hamiltonian HZ 10H 0(�) d� =Z 10DH(zh) � �zh�0d� = Hk+1 �H1; (23)Applying equation (23) to equation (22) implies that an autonomous Hamiltonian is onserved algorithmi-ally, that is, Hk+1=H1.3.4 The algorithmi Hamiltonian of the disontinuous Galerkin dG(k) methodProposition 3.1 Let the Hamiltonian H be onvex with respet to z and autonomous. Then, the dison-tinuous Galerkin dG(k) method yields a deay of the algorithmi Hamiltonian H(zh) for (i) onstant time�nite elements, that is, k = 0, in onjuntion with an arbitrary potential V , and for (ii) arbitrary k ifDH(zh)=Hzh, with H2M2ndof (R) being onstant.Proof. Consider the weak form (18). Owing to the arbitrariness of the fÆzIgk+1I=1 , the test spae is suhthat the following relationship between the trial funtions and the test funtions hold for (i) and (ii):Æzh = J�1DH(zh): (24)In the present ase the Fundamental Theorem of Calulus an be written asZ 10DH(zh) � �zh�0 d� = Hk+1 �H1: (25)7



Then, substituting from equation (24) into the weak form (18) leads toHk+1 �H1 +DH(z1) � [[zh℄℄ = 0; (26)where the skew-symmetry of the sympleti unit matrix J has been taken into aount.On the other hand, write the algorithmi Hamiltonian H0=H(z1�[[zh℄℄) by means of Taylor's theoremin the following form: H0 = H1 �DH(z1) � [[zh℄℄ +Q�([[zh℄℄); (27)where Q�([[zh℄℄) := 12H�[[zh℄℄ � [[zh℄℄. The matrix H� :=D2H(z�) is de�ned as the Hessian of the HamiltonianH at z� with z�2 [z0; z1℄.Finally, replaing H1 in equation (27) with equation (26), one obtainsHk+1 �H0 = �Q�([[zh℄℄): (28)A onvex Hamiltonian implies a positive de�nite quadrati form Q�([[zh℄℄). Therefore, aording to equation(28) a onvex Hamiltonian leads to a deay of the algorithmi Hamiltonian H(zh).Remark 3.6 Obviously, the latter ase is ful�lled by a quadrati potential V ; also see Hulbert [12℄.3.5 Derivation of G(1) time-stepping shemes using the general dG(1) methodNotation 3.4 We refer to quadrature as the approximated integration of an arbitrary funtion f(�) overI�, that is, Z 10 f(�)d� � NqXl=1 f(�l)wl; (29)where fwlgNql=12R and f�lgNql=12I� denote the weights and points of the quadrature, respetively.Proposition 3.2 The general G(1) and dG(1) methods generate idential time-stepping shemes with aontinuous solution if one quadrature point at � = 1=2 is employed.Proof. Consider the general dG(1) method, whih reads12 z2 + 12 z1 � z0 � hnZ 10M1JDH(zh)d� = 0; (30)12 z2 � 12 z1 � hnZ 10M2JDH(zh)d� = 0: (31)Addition of equation (30) and equation (31) rendersz2 � z0 � hnZ 10 (M1 +M2)JDH(zh)d� = 0; (32)and subtrating equations (30), (31), one obtainsz1 � z0 + hnZ 10 (M2 �M1)JDH(zh)d� = 0: (33)With the nodal shape funtions M1=1�� and M2=�, we obtain M1+M2=1 and M2�M1=2�� 1.Applying quadrature with one point at � = 1=2 to the integrals in equations (32) and (33) yields thedG(1) time-stepping sheme z2 � z0 � hnWJDH(zh(12)) = 0; (34)z1 � z0 = 0; (35)8



where W = � wp I OO wqI � : (36)The weights wp and wq are assoiated to the quadrature of �pH and �qH , respetively.Equation (35) is idential with the ontinuity ondition (13). Therefore, the solution obtained by onequadrature point at � = 1=2 is ontinuous. Employing equation (35) in equation (34) leads toz2 � z1 � hnWJDH(zh(12)) = 0: (37)On the other hand, the general G(1) method is given byz2 � z1 � hnZ 10JDH(zh)d� = 0: (38)The time-stepping sheme (37) is idential with the sheme emanating from the general G(1) method (38)assoiated with one quadrature point at � = 1=2Remark 3.7 Employing one quadrature point in the general dG(1) method may be interpreted as `reduedintegration'. This term stems from the �nite element method in spae; see Hughes [10℄.4 The one-body entral fore problem and linear time �nite ele-mentsThis setion ontains a detailed investigation of the algorithmi properties of the G(1) and dG(1) method.In this onnetion we apply both methods to a representative Hamiltonian system, namely the one-bodyentral fore problem.4.1 Hamiltonian formulationConsider the motion of a partile of mass m in the ambient three-dimensional Eulidean spae E3 relative toan inertial oordinate system. Apply the Cartesian oordinates fqigndofi=1 to desribe the ndof =3 degrees offreedom. Aordingly, with respet to a Cartesian basis feigndofi=1 the position of the partile an be desribedby the radius vetor r(q) :=P3j=1 qjej . Let an external onservative entral fore �eldF = ��rV = � dV (r)dr ur =: f(r)ur (39)at on the partile. Here, r :=krk is the magnitude of the radius vetor with respet to the Eulidean normk�k, so the vetor ur :=r=r denotes the unit vetor in diretion of the radius vetor and the salar funtionf represents the magnitude of the external fore F .Remark 4.1 Sine the external fore F is ollinear with the radius vetor r, the orbits of the partile liein a plane; see Arnold [1℄.The Lagrangian L = T � V of the natural system at hand is given byL(q; _q) = 12 m _r(q)2 � V (r(q)) = 12 m ��qr � _q�2 � V (r(q)) = 12 m _q � _q � V (pq � q); (40)Furthermore, in view of de�nition (3), the generalized momentum vetor p readsp = � _qL = m _q; (41)where the di�erentiation rule for quadrati forms was used.9



Remark 4.2 Owing to the appliation of Cartesian oordinates, the spaes R3 and E3 are homeomorphiand hene the generalized oordinate vetor q 2R3 and the generalized momentum vetor p2R3 have thedimensions of the radius vetor r2E3 and the linear momentum vetor P 2E3 , respetively.Substituting the generalized veloity vetor in the total kineti energy T with the generalized momentumvetor (41) gives the Hamiltonian H(q;p) = 12m p � p+ V (pq � q): (42)Remark 4.3 Despite the simpliity of the onsidered model problem, the struture of its Hamiltonian (42)oinides with that of muh more involved problems suh as nonlinear elastodynamis in semi-disrete form;see Betsh and Steinmann [3℄.Conerning the potential V (q) in (42), our investigations fous next on two distint appliations. Firstly,we onsider Hooke's entral fore law, and seondly, we deal with arbitrary entral fore laws.4.2 Hooke's entral fore law4.2.1 The HamiltonianHooke's entral fore law, also known as isotropi harmoni osillator, is a linear restoring fore onnetedwith eah degree of freedom; see Goldstein [8℄. The assoiated potential is given by the quadrati formV = � 12 qT ( I) q, where  < 0, with respet to the generalized oordinate vetor. In aordane withequation (42), one obtains the HamiltonianH(q;p) = 12m pT I p� 12  qT I q: (43)Using sympleti notation, equation (43) an be written in the formH = 12 zTH z; (44)where H2M2ndof (R) is a 6�6 matrix of the formH = � � I OO 1m I � : (45)Aordingly, the Jaobian is given by DH(z) =H z: (46)4.2.2 The algorithmi total energyAording to equation (44), the algorithmi total energy Hk+1 at the last node of the master element isgiven by Hk+1 = 12 zTk+1H zk+1: (47)In the present ase, a spei� time-stepping sheme generated by the G(k) or dG(k) method, respetively,an be ast in the form zk+1 = Ak z0; (48)where for the G(k) method the ontinuity ondition (13) is to be inluded. The matrix Ak 2M2ndof (R)denotes the so-alled ampli�ation matrix. Aording to Rihtmyer and Morton [17℄, we refer to (48) as thetwo-level sheme of the G(k) or dG(k) method, respetively. Furthermore, referring to Gantmaher [7℄, oneis able to substitute the so-alled Lagrange-Sylvester's interpolation polynomial of Ak for the matrix Akitself.Remark 4.4 The Lagrange-Sylvester's interpolation polynomial is attributed to Sylvester [20℄.10



If the roots f�igNmi=1 of the minimal polynomial pertaining to Ak are distint, one hasAk = NmXi=1Ak;i �i: (49)The matries fAk;igNmi=1 2M2ndof (C ) are alled the onstituent matries of the Lagrange-Sylvester's inter-polation polynomial of Ak. For distint roots f�igNmi=1, one hasAk;i = NmYj=1j 6=i Ak � �j1�i � �j ; i = 1(1)Nm: (50)Remark 4.5 The representation of a square matrix with distint roots of the orresponding minimal poly-nomial by the Lagrange-Sylvester's interpolation as above orresponds with the spetral representation of asymmetri seond-order tensor in onnetion with the Serrin formula; see Morman [16℄.Notation 4.1 Let us refer to exat quadrature as the exat integration of funtions f(�) over I�.Proposition 4.1 The G(1) method assoiated with exat quadrature preserves the algorithmi total energy.We use the following lemmas for the proof.Lemma 4.1 The algorithmi total energy H2 determined by the G(1) method assoiated with exat quadra-ture is given by H2=�2H0, where � denotes the spetral radius of the ampli�ation matrix.Proof. Consider the general G(1) method (38). Employ the Jaobian (46) and ompute the integral byusing exat quadrature. The ampli�ation matrix of the arising time-stepping sheme takes the formA1 = 11+
24 " (1�
24 ) I hnm Ihn  I (1�
24 ) I # ; (51)where aording to Hughes and Liu [11℄ 
 :=hn ! is alled the sampling frequeny and ! :=p�=m, <0,denotes the eigenfrequeny of the isotropi harmoni osillator. The eigenvalues of the ampli�ation matrix(51) are given by �1 = �3 = �5 = 4�
2 + i 4
4 + 
2 ; �2 = �4 = �6 = �1 = �3 = �5; (52)where i denotes the imaginary unit and the overline indiates the omplex onjugate. Aordingly, theampli�ation matrix (51) has multiple eigenvalues, that is, the harateristi polynomialP(�) = 6Yi=1 (�� �i) = ((�� �1) (�� �2))3 (53)of A1 has multiple roots. Aording to the harateristi polynomial (53), the minimal polynomial Pm(�) isgiven by Pm(�) = (�� �1) (�� �2). Obviously, it is Nm=deg(Pm)=2, where deg(Pm) denotes the degreeof the minimal polynomial. Determining the onstituent matries in view of equation (50) furnishesA1;1 = 12 " I 1i !m Ii !m I I # ; A1;2 = 12 " I �1i !m I�i !m I I # : (54)After employing equations (48) and (49) in equation (47), the algorithmi total energy H2 is given byH2 = 12 �2 zT0 0B� 2Xi;j=1j 6=i AT1;iHA1;j1CAz0 + 12 zT0  2Xi=1 �2iAT1;iHA1;i!z0; (55)11



where � denotes the spetral radius �(Ak) :=max j�ij=p�1�2, i=1(1)Nm, beause the roots �1 and �2 areomplex onjugate. The onstituent matries (54) satisfy the onditions2Xi;j=1j 6=i AT1;iHA1;j =H ; AT1;iHA1;i = O2; i = 1(1)2; (56)where O2 2M2ndof (R) denotes the 2ndof�2ndof zero matrix. Employing the equations (56) in equation(55) leads for k=1 to H2 = 12 �2 zT0H z0 = �2H0, so that for the G(1) method H0=H1 by the ontinuityondition (13).Lemma 4.2 The ampli�ation matrix of the G(1) method assoiated with exat quadrature has a squaredspetral radius equal to one, that is, �2 = 1.Proof. By the eigenvalues (52), the squared spetral radius �2 = �1�2 results in �2 = 1.Proof of Proposition 4.1 By Lemma 4.1 in onjuntion with Lemma 4.2 the algorithmi total en-ergy is preserved in the sense H2=H0 (see Figure 4.1), as already pointed out in Subsetion 3.3.De�nition 4.1 We say that the quadrature is symmetri if the quadrature points �1<�2<: : :<�Nq andthe assoiated weights w1; : : : ; wNq satisfy 1 = �Nq�i + �1+i and wNq�i = w1+i, i = 0(1)int([Nq � 1℄=2),respetively. The funtion int(�) gives the integer part of its argument.Remark 4.6 The onditions in De�nition 4.1 mean (i) that the quadrature points lie in pairs (�Nq�i; �1+i)symmetrial to the midpoint of I� (�=1=2) and, additionally, a quadrature point exists at �=1=2 for anodd number of quadrature points and (ii) that the weights (wNq�i; w1+i) of the quadrature points pertainingto suh a pair (�Nq�i; �1+i) are idential.Remark 4.7 For example, aording to Shwarz [19℄, the Gaussian quadrature, whose quadrature pointsare idential to the zeros of the Legendre polynomials relating to I�, is symmetri. Further, the trapezoidalrule with a quadrature point on eah boundary of the master element I� is also symmetri.Remark 4.8 Note that the midpoint rule is idential to the Gaussian quadrature with one quadrature point.Proposition 4.2 The G(1) method assoiated with symmetri quadrature onserves the algorithmi totalenergy.The proof rests upon the following lemmas.Lemma 4.3 The algorithmi total energy alulated by the G(1) method assoiated with quadrature readsH2 = �2H0, where � denotes the spetral radius of the ampli�ation matrix.Proof. Using quadrature to approximate the integral of the general G(1) method (38), the ampli�ationmatrix of the arising time-stepping sheme is given byA1 = 11+�22 
2 " (1+�1 �2
2) I hnm (�1+�2) Ihn  (�1+�2) I (1+�1 �2
2) I # ; (57)where we have introdued �i := NqXl=1 Mi(�l)wl; i = 1(1)k+1: (58)Regarding the ampli�ation matrix (57), the onstituent matries also take the form of the matries (54),so that by Lemma 4.1 the algorithmi total energy reads H2 = 12 �2 zT0H z0 = �2H0, whereby H0=H1 forthe G(1) method owing to equation (13). 12



Lemma 4.4 The ampli�ation matrix of the G(1) method assoiated with symmetri quadrature has asquared spetral radius equal to one, that is, �2 = 1.Proof. The squared spetral radius �2 orresponding to the ampli�ation matrix (57) is given by�2 = 1 + �21
21 + �22
2 : (59)Aordingly, �2 = 1 leads to the following restrition on the quadrature rules:�21 = �22 : (60)Considering the de�nition of the f�ig2i=1 in equation (58), the restrition takes the form:NqXl=1 (1� 2�l)wl = 0; (61)Taking into onsideration De�nition 4.1, one obtainsNqXl=1 (1� 2�l)wl = �Xl=0 2 �1� �1+l � �Nq�l�w1+l = 0; (62)where � = int(Nq=2). Consequently, for arbitrary weights the parentheses have to vanish separately, whihis ful�lled by symmetri quadrature. Therefore, symmetri quadrature renders �2=1.Proof of Proposition 4.2 By Lemma 4.3 the algorithmi onservation ondition is �2=1. This onditionis ful�lled by symmetri quadrature in view of Lemma 4.4. Consequently, symmetri quadrature onservesthe total energy of the G(1) method algorithmially.Corollary 4.1 The midpoint rule preserves the algorithmi total energy omputed with the G(1) method.Proof. The midpoint rule is aording to De�nition 4.1 a symmetri one-point quadrature rule. By Proposi-tion 4.2 the algorithmi total energy determined by the G(1) method is preserved for symmetri quadrature;see Figure 4.2.Proposition 4.3 The algorithmi total energy determined by the dG(1) method assoiated with exat quadra-ture deays, that is, H2<H0.The proof relies on the following lemmas.Lemma 4.5 The algorithmi total energy H2 determined by the dG(1) method assoiated with exat quadra-ture is given by H2=�2H0, where � denotes the spetral radius of the ampli�ation matrix.Proof. Consider the general dG(1) method (30), (31) in onjuntion with the Jaobian (46) and exatlyevaluated integrals. The elimination of the internal node z1 leads to a two-level sheme with the ampli�ationmatrix A1 = �2
4+4
2+36" (7
2�18) I hnm (
2�18) Ihn  (
2�18) I (7
2�18) I # : (63)The onstituent matries A1;1, A1;2 pertaining to the ampli�ation matrix (63) and the matries (54) of theG(1) method are idential. Hene the algorithmi total energy at the node 2 is aording to Lemma 4.1given by H2=�2H0. 13



Lemma 4.6 The ampli�ation matrix of the dG(1) method assoiated with exat quadrature has a squaredspetral radius being less than one, that is, �2 < 1.Proof. The eigenvalues of the ampli�ation matrix (63) read�1 = �3 = �5 = �2 7
2 � 18 + i
 �
2 � 18�
4 + 4
2 + 36 ; �2 = �4 = �6 = �1 = �3 = �5; (64)where i denotes the imaginary unit; also see Hulbert [13℄ and Ruge [18℄. Thus, the squared spetral radius�2 = �1�2 is given by �2 = 4
2 + 36
4 + 4
2 + 36 : (65)Sine the denominator is larger than the numerator for all sampling frequenies 
 6= 0, the squared spetralradius �2 is less than one.Proof of Proposition 4.3 By Lemma 4.6 the squared spetral radius is less than one, so that thealgorithmi total energy deays in view of Lemma 4.5; see Figure 4.1.Proposition 4.4 Considering symmetri quadrature, only one quadrature point preserves the algorithmitotal energy omputed with the dG(1) method. In all other ases the algorithmi total energy deays.The proof rests upon the following lemmas.Lemma 4.7 The algorithmi total energy alulated by the dG(1) method assoiated with quadrature readsH2 = �2H0, where � denotes the spetral radius of the ampli�ation matrix.Proof. Consider the general dG(1) method (30), (31). Employing the Jaobian (46) and approximatingthe integral by using quadrature, one obtains�121��12hnJH�z2+�121��11hnJH�z1 � z0 = 0; (66)�121��22hnJH�z2 ��121+�12hnJH�z1 = 0; (67)where �ij = NqXl=1 Mi(�l)Mj(�l)wl; i; j = 1(1)k+1: (68)Beause of the ompliated terms, we omit an expliit representation of the ampli�ation matrix. Theonstituent matries pertaining to the time-stepping sheme (66), (67) are idential with the matries (54)of the G(1) method. Therefore, the algorithmi total energy is, in view of Lemma 4.1, given by H2 = �2H0.Lemma 4.8 Applying symmetri quadrature to the dG(1) method, only one quadrature point an lead to asquared spetral radius of the respetive ampli�ation matrix being equal to one, that is, �2 = 1. In all otherases �2 < 1 holds.Proof. The squared spetral radius orresponding to the time-stepping sheme (66), (67) reads�2 = 1+4�212
21+4�212
2+(�22��11)2
2+4 (�212��11�22)2
4 : (69)Consequently, for sampling frequenies 
 6= 0 the squared spetral radius is equal to one if�11 = �22; (70)�212 = �222: (71)14
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Considering linear time �nite elements, employing the trial funtion ph=P2i=1Mi pi, where M1=1�� andM2=� are the nodal shape funtions, in equation (85) and applying symmetri one-point quadrature, oneobtains after expanding T2 � T1 = wp � 12m pT2 p2 � 12m pT1 p1� : (87)On aount of the identity H = T+V in onjuntion with equation (77), equation (87) an be written asT2�T1 = wp (T2 � T1). Therefore, the Fundamental Theorem of Calulus for the kineti energy T is ful�lledby wp=1, that is, the midpoint rule.Next we employ the trial funtion qh = P2i=1Mi qi in equation (86) and get after using symmetrione-point quadrature V2 � V1 = �wq f(rh(1=2))2 rh(1=2) �r22 � r21� ; (88)where r2=q � q has been taken into aount. Hene it follows that we obtain the weightwq = �V2 � V1r22 � r21 2 rh(1=2)f(rh(1=2)) : (89)The determined weights wp and wq yield the following time-stepping sheme:q2 � q1 � hn2m (p1 + p2) = 0; (90)p2 � p1 + hn V2 � V1r22 � r21 (q1 + q2) = 0: (91)Notation 4.2 Aording to Betsh and Steinmann [4℄, we refer to the symmetri one-point quadrature withthe weights wp = 1 and wq from equation (89) as the modi�ed midpoint rule.Now onsider the time-stepping sheme (90), (91). First we salar multiply equation (91) with (q2�q1).Then, taking into aount the identity r2=q � q, one obtains(p2 � p1) � (q2 � q1) + hn (V2 � V1) = 0: (92)Next, we employ equation (90) in equation (92) and onvert the result suh thathn� 12m pT2 p2 � 12m pT1 p1�+ hn (V2 � V1) = 0: (93)With regard to equation (87), where wp=1, for a nonvanishing time step size hn the equation (93) leads toH2=H1, that is, algorithmi total energy onservation of the G(1) method; see Figure 4.6.Corollary 4.9 The algorithmi total energy determined by the dG(1) method assoiated with the modi�edmidpoint rule is onserved.Proof. With regard to Proposition 3.2 the general dG(1) method leads to a G(1) time-stepping sheme byusing one quadrature point at �=1=2, that is, applying a symmetri one-point quadrature (see Remark 4.6).By Proposition 4.6 the modi�ed midpoint rule preserves the algorithmi total energy of the G(1) method;see Figure 4.6.4.3.3 The algorithmi total angular momentum onservationWith regard to equation (73) the algorithmi total angular momentum for linear time �nite elements is givenby L2 = q2 � p2: (94)20
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where the identity L1=q1 � p1 has been used. Now an elimination of p2 in the time-stepping sheme (98),(99) and a subsequently vetor multipliation of the resulting equation with p2 leads tohnm p1 � p2 = hn �1 + �2�1 + �2 q1 � q2: (102)Finally, employing the equations (101) and (102), equation (100) yields the following relation for the algo-rithmi total angular momentum: L2 = L1 + hnN 2; (103)where N 2 = �1 �1 � �2 �2�1 + �2 q1 � q2: (104)Remark 4.10 Equation (103) an be related to the rate of hange (4) of the total angular momentum. Oneobtains �(1) = N2, where �(1) = 1hn (L2 �L0) denotes the �rst divided forward di�erene of the totalangular momentum L(�) of the master element I�; see Hildebrand [9℄. Thus we may interprete �(1) =N 2as the algorithmi ounterpart of the rate of hange (4) of the total angular momentum.Notation 4.3 Due to Remark 4.10, we generally refer to Nk+1 as the algorithmi total torque of the G(k)and dG(k) method, respetively.Proof of Proposition 4.7 By Lemma 4.9, the ondition for the onservation of the algorithmi totalangular momentum L2, in the sense that L2 =L1, is N2 = 0. Beause of the integrals in the algorithmitotal torque N 2, whih are approximated by quadrature, we may interprete the ondition N 2 = 0 as arestrition on the positions of the quadrature points f�igNqi=1.By equation (104) the onservation ondition reads (�1 �1 � �2 �2) q1 � q2 = 0. If the entral forevanishes (f(r) = 0) then (i) the f�1g2i=1 are vanishing and (ii) the orbit is a line whih implies q2 = a q1,a2R, so that the ross produt q1�q2 vanishes. For f(r) 6=0 the ross produt q1�q2 is not vanishing ingeneral. Therefore, the onservation ondition is redued to (�1 �1 � �2 �2) = 0.Taking into aount the de�nitions (58) and (97) of the oeÆients f�igk+1i=1 and f�igk+1i=1 , respetively, andthe nodal shape funtions (11), we obtain the following ondition for algorithmi total angular momentumonservation: NqXl;L=1l6=L (1� �l � �L) f(rh(�L))rh(�L) wl wL + NqXl=1 (1� 2�l) f(rh(�l))rh(�l) w2l = 0: (105)Considering symmetri quadrature, by the relations M1(�Nq�i) = M2(�1+i) and M2(�Nq�i) = M1(�1+i),i = 0(1)int([Nq�1℄=2), only the parentheses of the pairs (�Nq�i; �1+i) vanish. Consequently, for an arbitraryentral fore law f(r) as well as for arbitrary weights, equation (105) is ful�lled if �1 = �2 = : : : = �Nq = 1=2.Therefore, only one quadrature point at �=1=2, that is, symmetri one-point quadrature, leads to algorith-mi total angular momentum onservation; see Betsh and Steinmann [4℄.Remark 4.11 A symmetri one-point quadrature satis�es the auxiliary ondition �1+�2 6=0.Corollary 4.10 The algorithmi total angular momentum determined by the G(1) method assoiated withthe midpoint rule or the modi�ed midpoint rule is onserved.Proof. The symmetri one-point quadrature inludes the midpoint rule as well as the modi�ed midpointrule. Aordingly, the G(1) method assoiated with the midpoint rule or the modi�ed midpoint rule on-serves the algorithmi total angular momentum in view of Proposition 4.7; see Figure 4.7.22



Proposition 4.8 Considering the dG(1) method assoiated with symmetri quadrature, solely one quadra-ture point preserves the algorithmi total angular momentum of the dG(1) method for all entral fore lawsf(r).To prove Proposition 4.8 we use the following lemma.Lemma 4.10 The algorithmi total angular momentum L2 omputed with the dG(1) method assoiated withquadrature is given by L2=L0+hnN 2, where hn denotes the time step size and N 2 the algorithmi totaltorque.Proof. Consider the general dG(1) method (30), (31). The determination of the algorithmi total angularmomentum demands the expliit representation of the general dG(1) method:12 q2 + 12 q1 � q0 � hnZ 10M1(�) �pH(�)d� = 0; (106)12 p2 + 12 p1 � p0 + hnZ 10M1(�) �qH(�)d� = 0; (107)12 q2 � 12 q1 � hnZ 10M2(�) �pH(�)d� = 0; (108)12 p2 � 12 p1 + hnZ 10M2(�) �qH(�)d� = 0: (109)Taking the trial funtions ph(�) =P2j=1Mj(�)pj and qh(�) =P2j=1Mj(�) qj as well as quadrature intoonsideration, one obtains the following time-stepping sheme:12 q2 + 12 q1 � q0 � hnm 2Xj=1 �1j pj = 0; (110)12 p2 + 12 p1 � p0 + hn 2Xj=1 �1j qj = 0; (111)12 q2 � 12 q1 � hnm 2Xj=1 �j2 pj = 0; (112)12 p2 � 12 p1 + hn 2Xj=1 �j2 qj = 0; (113)where �ij := � NqXl=1 Mi(�l)Mj(�l) f(rh(�l))rh(�l) wl; i = 1(1)k+1: (114)With regard to the de�nition (114), the oeÆients �ij are symmetri, that is, �ij = �ji. Aording to thede�nition (68), the oeÆients �ij are also symmetri. This symmetry has been taken into aount in theequations (112) and (113).Firstly, add equation (110) and equation (112) and use the identity �i=�i1 + �i2, where �i is de�ned byequation (58), in aordane with the relation M1+M2=1 of the nodal shape funtions. On the other hand,add the equations (111) and (113) and use the relation �i=�i1 + �i2, also due to M1+M2=1. The f�igk+1i=1are de�ned by equation (97).One obtains the algorithmi total angular momentum L2 by employing both relations just determined inequation (94): L2 = L0+hnm �1p1�p0 � hn�q0+hnm �1p1�� 2Xj=1 �j qj ; (115)where use has been made of the identity L0=q0�p0.23



Employing the di�erene of equation (113) and equation (111) in the middle term of equation (115), leadsto L2=L0 � hn q0 � 2Xj=1 �j qj � 2h2nm �1 p1 � 2Xj=1 �j2 qj : (116)The generalized momentum vetor p1 in the last term of equation (116) an be replaed by the ombinationof equation (113) with the sum of the equations (110) and (112). Ultimately, the algorithmi total angularmomentum is given by L2 = L0 + hnN 2; (117)where N2 = �1 � �2�1 + �2 (�12 (q0 � q2)� q1 + �22 q0 � q2) + �12 (q1 � q0)� q2 + �11 q1 � q0: (118)Proof of Proposition 4.8 By Lemma 4.10 the onservation ondition is the vanishing algorithmi totaltorque N2. Aordingly, we have to �nd quadrature points f�lgNqi=1 satisfying the equation N2 = 0. The�rst term vanishes for an arbitrary entral fore law only if �1 = �2. Taking into onsideration the nodalshape funtions and symmetri quadrature, one obtainsNqXl=1 (1� 2�l)wl = �Xl=0 2 �1� �1+l � �Nq�l�w1+l = 0; (119)where � = int(Nq=2). Consequently, for arbitrary weights the parentheses have to vanish separately, whihis ful�lled by symmetri quadrature.The last two terms vanish for an arbitrary entral fore law only if q0 = q1, that is, a vanishing jump[[qh℄℄. By the di�erene of the equation (110) and (112) the jump vanishes solely if �i2 = �i1, i = 1(1)2.Taking symmetri quadrature and the nodal shape funtions into aount, both onditions lead to�Xl=0 �12 � �1+l�2w1+l = 0; (120)where �=int(Nq=2). For arbitrary weights the parentheses have to vanish, so that �1=�2= : : :=�Nq =1=2is the solution. Therefore, only a symmetri one-point quadrature preserves the algorithmi total angularmomentum for an arbitrary entral fore law.Corollary 4.11 The algorithmi total angular momentum determined by the dG(1) method assoiated withthe midpoint rule or the modi�ed midpoint rule is onserved.Proof. Sine the symmetri one-point quadrature inludes the midpoint rule as well as the modi�ed mid-point rule, the algorithmi total angular momentum determined by the dG(1) method assoiated with themidpoint rule or the modi�ed midpoint rule is onserved aording to Proposition 4.8; see Figure 4.7.Corollary 4.12 Considering the dG(1) method assoiated with symmetri quadrature, only a ontinuoussolution, that is, [[zh℄℄ = 0, preserves the algorithmi total angular momentum for all entral fore laws f(r).Proof. Aording to Proposition 4.8, only a symmetri one-point quadrature preserves the total angu-lar momentum algorithmially. Furthermore, owing to Proposition 3.2 a symmetri one-point quadratureapplied to the general dG(1) method furnishes a G(1) time-stepping sheme with a ontinuous solution,that is, z0 = z1. Consequently, only a ontinuous solution leads to algorithmi total angular momentumonservation for an arbitrary entral fore law in the sense that L�=0=L�=1.24
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analyticalFigure 4.7 The nonvanishing total angular momentum omponent L�=L�(t), where the �-axis is perpendiular tothe plane of motion, of the potential V = 12  �r2 � 1�2 with mass m=2, total energy H=6000 and potential onstant=1000. Computed with the G(1) and dG(1) method assoiated with midpoint rule as well as modi�ed midpointrule (m.m.r). That is, Nq=1. The time step size hn is 0:01.5 ConlusionsThe ontinuous Galerkin G(k) method for holonomi mehanial systems, investigated by Betsh and Stein-mann [3, 4, 5℄, was ompared to the disontinuous Galerkin dG(k) method. In ontrast to the inherent energyonservation of the G(k) method, the dG(k) method ahieves energy nononservation in general. Energydissipation of the dG(k) method has been shown for (i) k=0 in onjuntion with arbitrary potentials V and(ii) arbitrary k in the ase of quadrati potentials V . Furthermore, we have shown that G(1) time-steppingshemes an be derived from the dG(1) method by applying one quadrature point at the midpoint of themaster element (redued integration).Considering quadrati potentials V , a relationship between the algorithmi onservation properties andthe spetral radius of the ampli�ation matrix pertaining to the G(1) and dG(1) time-stepping shemes,respetively, emanating from exat as well as numerial quadrature, was derived. This relationship demon-strates the inuene of numerial quadrature on the algorithmi onservation properties.For arbitrary potentials V a quadrature rule, namely the modi�ed midpoint rule, was presented whihpreserves the algorithmi total energy and angular momentum of the dG(1) method. Aordingly, algorithmionservation is only possible for ontinuous approximations, that is, when the dG(1) method degenerates tothe G(1) method by employing one quadrature point at the midpoint of the master element.We refer to Tables 5.1 for an overview of the numerous results.G(1) Hooke's potential Arbitrary potentialsexat sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1H C C C C�exat sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1L C C C C NC

dG(1) Hooke's potential Arbitrary potentialsexat sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1H D C D C�exat sym. quadrature sym. quadratureNq=1 1<Nq<1 Nq=1 1<Nq<1L D C D C NCTable 5.1 On the left and right, the algorithmi onservation properties of the G(1) and dG(1) method, respetively,are depited. `C' denotes onservation, `D' denotes deay, `C�' denotes onservation only with modi�ed midpoint ruleand `NC' denotes nononservation. An empty box signi�es the absene of a orresponding evidene or ounterevidene.25
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