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Summary
In this paper, we will present a numerical comparison of three kinds of time dis-

cretisations for semi-discrete viscoelastodynamics. In the introduction, we explain
our main goals and our present ingredients. Then, we explain the used formulation
of dissipative dynamics. The next step is a finite element discretisation in space
and time. And finally, we show the numerical example.

Introduction
Treading boundary-initial value problems as moving solid bodies numerically,

a spatial discretisation using the finite element method is a standard procedure in
mechanical engineering. The time discretisation, however, has been still often car-
ried out by finite differences, although a finite element approximation of the time
dimension is well-known since many years [1] and self-evident after using spatial
finite elements. For example, one advantage of finite elements in time is that one
obtains a higher order accurate time approximation in a natural way. Since the
last decade, finite elements in time are again in the researchers’ interest, because a
further advantage is that continuous temporal finite element methods inherit con-
servation laws of dynamical systems [2]. These methods are therefore a natural
starting point to construct higher order energy-momentum conserving time integra-
tors which turned out to be well suited for computing long time runs in nonlinear
elastodynamics [3]. Second order conserving integrators are well-known to exhibit
superior stability properties which are of utmost importance in a nonlinear finite
element framework.

On the theoretical side, our goal is a unified description of dissipative dynam-
ical systems. Important examples are viscoelasticity with dissipation of memory
type, which we consider in this paper, viscoelasticity with dissipation of rate type
and thermal dissipation. On the numerical side, we aim at a physically consistent
discretisation to obtain more stable numerical schemes. Considering finite motions
of a solid body consisting of viscoelastic material, we show that an energy consis-
tent time integration is also of great advantage for dissipative dynamical systems.
In contrast to the application of standard time integrators, the dissipation is guar-
anteed independent of the material parameters and not dependent on the time step

1Chair of Computational Mechanics, Department of Mechanical Engineering, University of
Siegen, Germany.

Proceeding of ICCES’05, 1-10 December 2005, INDIA 2646



size. Our present ingredients are a Hamiltonian formulation of dissipative dynam-
ics, which leads to weak evolution equations for all state variables. These equations
are then discretised by standard finite elements in space and by standard, respec-
tively, energy-momentum consistent finite elements in time.

Constitutive formulation
For viscoelasticity of memory type, we use an internal variable formulation.

The starting point is a free energy Ψ = Ψ(Ct ,Γt) depending on the right Cauchy-
Green tensor Ct = FT

t Ft and a tensor-valued internal variable Γt . Both the defor-
mation mapping ϕt ∈ L2(B0,R

ndim) and the internal variable Γt ∈ L2(B0,R
ndim×ndim)

are mappings from the reference configuration into Euclidean spaces. The deforma-
tion gradient is given by F t = ∇ϕt . The evolution equation of the fading memory
Γ̇t = f mem(Ct ,Γt) is chosen such that the second law of thermodynamics is fulfilled:

−
∂Ψ
∂Γt

: Γ̇t ≥ 0 (1)

We restrict us to isotropic finite viscoelasticity according to [4]. In this formula-
tion, the free energy is divided into an equilibrium part and a non-equilibrium part:
Ψ = Ψeq(ICt , IICt , IIICt )+Ψneq(ICe

t , IICe
t , IIICe

t ). The equilibrium part of the free en-
ergy then depends on the invariants of the right Cauchy-Green tensor and the non-
equilibrium part depends on the invariants of the so-called elastic right Cauchy-
Green tensor defined by Ce

t = CtΓ−1
t . The evolution equation of the fading memory

Γ̇t Γ−1
t = 2

[

V −1 : Me
t

]

is chosen such that the Clausius-Duhem Inequality is given
by a positive definite quadratic form with respect to the elastic Mandel stress tensor
Me

t = [Ce
t ]

T Se
t , where

Se
t = 2 ∂Ψneq

∂Ce
t

and V −1 := 1
2ηdev

I dev +
1

3ηvol
I vol (2)

denotes the elastic stress tensor and the inverse viscosity tensor, respectively.

Dynamical Formulation
We use a Hamiltonian formulation in which the internal variable Γt is in-

corporated in the dynamics as a further state variable by defining the extended
state manifold X = Q×VQ ×S with the state variables ϕt ∈ Q, πt = ρ0V t ∈VQ and
Γt ∈ S. For functionals F ,G : X → R on X , there exists a bracket structure {{•,•}}
which is divided into two parts as follows: {{F ,G}} = {F ,G}− ≺ F ,G �, for
all F ,G : X → R. The first part is a Poissonian (skew-symmetric) bracket repre-
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senting the conservative structure given by

{F ,G}(ϕt ,πt ,Γt) =

Z

B0

δF
δϕt

·
δG
δπt

−
δF
δπt

·
δG
δϕt

(3)

The second part is the following semi-metric (symmetric) bracket representing the
dissipative part defined by a symmetric transformation of the viscosity tensor

≺ F ,G �(ϕt ,πt ,Γt) =

Z

B0

δF
δΓt

: V̂ (Γt) : δG
δΓt

(4)

This bracket structure defines the weak evolution equations Ḟ = {{F ,H }} for
all F : X → R with respect to a Hamiltonian H : X → R. For this problem, the
Hamiltonian is given by the sum of kinetic and total free energy:

H (ϕt ,πt ,Γt) =

Z

B0

1
2ρ−1

0 πt ·πt +Ψ(Ct ,Γt) (5)

Considering the following coordinate functionals corresponding to the three state
variables,

Fϕ =
Z

B0
δπt ·ϕt , Fπ =

Z

B0
δϕt ·πt , FΓ =

Z

B0
δΓt : Γt , (6)

we obtain three weak evolution equations. First, we obtain the two equations of
motion given by

Z

B0
δπt · ϕ̇t =

Z

B0
δπt ·ρ−1

0 πt ,
Z

B0
δϕt · π̇t = −

Z

B0
2 ∂Ψ

∂Ct
: [∇ϕt ]

T ∇[δϕt ] (7)

And second, we obtain the equation for the internal variable evolution as follows:
Z

B0
δΓt : Γ̇t = −

Z

B0
δΓt : V̂ (Γt) : ∂Ψ

∂Γt
(8)

This set of evolution equations fulfil the following balance laws. First, we obtain
total linear momentum conservation Ṗ = {{P ,H }} = 0 according to the transla-
tional symmetry, where

P =

Z

B0
ξ ·πt , ∀ξ ∈VQ. (9)

Second, a rotational symmetry of the system leads to total angular momentum con-
servation L̇ = {{L ,H }} = 0, where L is defined by

L =

Z

B0
ξ · [ϕt ×πt ] , ∀ξ ∈VQ. (10)
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And third, the given brackets fulfil the balance between Hamiltonian and internal
dissipation: Ḣ = {H ,H }− ≺ H ,H �= −Dint ≤ 0, where the internal dissipation
reads in the end

Dint =

Z

B0
Me

t : V −1 : Me
t . (11)

Finite element discretisation
First, we perform a continuous spatial finite element discretisation. We approx-

imate the spaces Q and VQ by isoparametric finite element subspaces.

Qh = {ϕh
t ∈C0(B0,R

ndim) | ϕh
t = ∑nnod

A=1 NA xA
t }

V h
Q = {ηh

t ∈C0(B0,R
ndim) | ηh

t = ∑nnod
A=1 NA cA

t }
(12)

This approximation and standard arguments leads to semi-discrete evolution equa-
tions. We obtain the equation ẋt = M−1 pt as well as the equation ṗt = −Q(Ct ,Γt)xt
with respect to the nodal coordinate vector xt = (x1

t , . . . ,x
nnod
t ) and the nodal mo-

mentum vector pt = (p1
t , . . . , pnnod

t ). To determine the internal variable evolution,
we can solve the spatial approximated weak form or the strong form at the spa-
tial Gauss points. As in the work [4], we realise the latter and solve the equation
Γ̇t Γ−1

t = 2
[

V −1 : Me
t

]

.

Now, we perform a continuous temporal finite element discretisation. For a
shorter description, we combine the canonical state variables into one variable
z = (x1

, . . . ,xnnod
, p1

, . . . , pnnod). As trial functions, we use Lagrange polynomials
of degree k formulated with respect to a master element Tα = [0,1], which read
zh(α) = ∑k+1

I=1 MI(α)zI and Γh(α) = ∑I MI(α)ΓI . The corresponding test functions
are Lagrange polynomials of degree k− 1 given by δzh(α) = ∑k

J=1 M̃J(α)δzJ and
δΓh(α) = ∑J M̃J(α)δΓJ . And finally, we formulate temporal weak forms of the
semi-discrete evolution equations and the strong internal variable evolution:

Z 1

0
Jδzh · [zh]′ = hn

Z 1

0
δzh ·H(zh)zh

Z 1

0
δΓh : [Γh]′ = hn

Z 1

0
δΓh : [2V −1 : Me(Γh)]Γh

(13)

Alternatively, we perform a discontinuous temporal finite element discretisation.
The trial and the test functions are now Lagrange polynomials of degree k such that
the test function now read δzh(α) = ∑k+1

I=1 MI(α)δzI and δΓh(α) = ∑I MI(α)δΓI . In
the associated weak forms, we have therefore jump terms which enforce the initial
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conditions weakly:
Z 1

0
Jδzh · [zh]′ = Jδz1 · [[zh]]+hn

Z 1

0
δzh ·H(zh)]zh

Z 1

0
δΓh : [Γh]′ = δΓ1 : [[Γh]]+hn

Z 1

0
δΓh : [2V −1 : Me(Γh)]Γh

(14)

First, we show the natural time approximations in the constitutive laws correspond-
ing to the cG and dG method. The trial functions directly implicate the approx-
imation Fh = ∑I MI F I of the deformation gradient. The approximations Ch and
Ce,h of the strain tensors are based on the approximation of the deformation gra-
dient. The approximations Se,h and Me,h of the ‘elastic’ stress tensors depend on
the approximation of the ‘elastic’ right Cauchy-Green tensor. And the total second
Piola-Kirchhoff stress tensor Sh = 2∇CΨela(Ch)+ Isym : Se,h[Γh]−t then depends on
the time approximation of both strain tensors.

In the eG method we apply the approach of assumed strain approximations
for which we have shown in [3] that it is invariant with respect to superimposed
rigid body motions. The approximation F h of the deformation gradient has been
retained unmodified from the cG method. However, the strain tensors will be now
interpolated over the strains at the time nodes. Thus, we obtain the approxima-
tions C = ∑I MI CI and Ce = ∑I MI CI [ΓI]

−1, where CI = [F I ]
t F I . The stresses then

depend on these assumed strains. The ‘elastic’ Mandel stress tensor is given by
Me= [Ce]t Se with the elastic stress tensor Se = 2∇CeΨvis(Ce). The total second
Piola-Kirchhoff stress tensor then read S = 2∇CΨela(C)+ Isym : Se[Γh]−t . The main
issue of the eG method, however, is its energy consistency which is based on an ad-
ditionally introduced algorithmic stress tensor. We add to the approximation of the
physically based stress tensor S an algorithmic stress tensor Salg. The algorithmic
stress tensor is a closed form expression derived from a constrained least-squares
minimisation (compare in [3] the case of nonlinear elasticity). The result is the
following weighted time derivative of the right Cauchy-Green tensor:

Salg = 2 G(0)
R 1

0 ‖C′‖2 dα]
C′ (15)

where

G(Salg
α ) = Ψα=1 −Ψα=0 −

Z 1

0
[Sα +Salg

α ] : 1
2
[Cα]

′ +
∂Ψα

∂Γα
: [Γα]

′
. (16)

Numerical Example
As numerical example, we consider a general free motion of a L-shaped body

initiated by an initial translation velocity vector vT = (6,0,0) and an initial an-
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Figure 1: Total energy of the eG(1) (left side), cG(1) (mid position) and the dG(1)
method (right side)

gular velocity vector ω0 = (0,0,0.6). We used linear finite elements in time and
4-node spatial finite elements, for instance. The free energy functions are both Neo-
Hookean with λ = 30000, µ = 7500 and ρ = 8.93. The viscosities are ηdev = 50000
and ηvol = 10000.

In Figure 1, we show the total energy H of the L-shaped body versus the time
t computed with a medium time step size of hn = 0.1. After changing time step
size at t = 20, the total energy of the cG-method is increasing while the energy of
the eG-method continued to decrease. A further disadvantage of the cG-method
is the only time-averaged decrease using this medium time step size. Using the
numerically dissipative dG-method for computing this motion, the total energy also
decreases. However, after changing time step size, we obtain a jump in the total
energy and a further decrease in the equilibrium state.
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