COMPDYN 2009
ECCOMAS Thematic Conference on
Computational Methods in Structural Dynamics and Eartkeguzngineering
M. Papadrakakis, N.D. Lagaros, M. Fragiadakis (eds.)
Rhodes, Greece, 22-24 June 2009

DYNAMIC FINITE DEFORMATION VISCOELASTICITY IN
PRINCIPAL STRETCHES: ENERGY-CONSISTENT TIME
INTEGRATION USING MIXED FINITE ELEMENTS

Melanie Miller!, Michael GroR? and Peter BetscH

lUniversity of Siegen
Paul-Bonatz Str. 9-11, 57068 Siegen
e-mail: mueller@imr.mb.uni-siegen.de

2 University of Siegen
Paul-Bonatz Str. 9-11, 57068 Siegen
e-mail: {gross, betsch@imr.mb.uni-siegen.de

Keywords: viscoelasticity, Ogden material model, principal streshfenhanced assumed strain
elements, discrete gradient, fulfillment of energy balance

Abstract. The main goal of the present work is to describe viscoelastittopic material
behaviour with an internal variable, which is derived frohetwell-known stretch tensdar.
Furthermore it is shown a time integration method, whicliilfalthe underlying balances of
the system. The discretisation in space is performed byrhareed assumed strain (EAS)
elements, which remedy the locking effects of the nonlidsgtacement based elements. The
chosen material model is the Ogden material model. This huefgends merely on principal
stretches. The theory is confirmed by two examples of a fieg fly
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1 INTRODUCTION

The numerical implementation of the concept of internalaldes for viscoelastic material
is increasingly performed only sinde [1]. A further devetognt of this approach was done by
[2,13,[4]. These papers deal with numerical simulations $othiermal processes. In [5] was
developed a concrete model with a multiplicative decomjmsof the deformation gradient in
an elastic and inelastic part. This decomposition is magivay the transient network theory. A
further work on this micromechanical level was done. in [6¢rélin the level of continuum me-
chanics a fictive intermediate configuration is describdus Tonfiguration can be interpreted
as a real existing intermediate configuration on molecehall The usage of the internal vari-
able ©; is motivated byl[F]. For isotropic materials the invariantghe elastic strain measure
C., usingg¢; or u;, are the same.

The approach of the multiplicative split is also used in ohéhe newest works [8], which
deals with viscoelastic materials in dynamics. Thereinra@rnal variable’; is used, which is
derived by the right Cauchy-Green strain tensor for isotramaterial behaviour. Moreover, the
conservation properties are fulfilled up to the underlywigriance of the Newton-Raphson iter-
ation of the system. This leads to an enhanced numericalistabhe conservation properties
are already mentioned ihl[9] and the references thereirs @dpers confirm the necessity of al-
gorithmic conservation properties. The discretisatiotinre leads back to the discrete gradient
of [10Q].

The well-known EAS elements for the spatial discretisadoaderived by the Hu-Washizu
functional which is mentioned in the works |11 12]. Thessnadnts remedy the locking effect
of the nonlinear standard displacement based elementse# gdvantage for high Poissons
number (rubberlike materials) in combination with high doamce of bending. A disadvantage
is the instability under pressure loads, comparé [13].

The Ogden model as material model is well-suited for ruldkerinaterial. The main ad-
vantage of the Ogden material model is, that it can be welptdbto experimental data, see
[14,[15]. According tol[16], plastics, like rubbers becomeremand more important in the class
of technical materials. This model depends only on priricg@tches. A very compact il-
lustration of the principal stretches in conjunction witlegi-incompressible elasticity include
[17].

2 KINEMATICS

In order to describe a motion of a continuum a reference cordtgn in the domairi3,
and a current configuration in the domdip is necessary. The continuuthcan therefore be
specified at the time= 0 and an arbitrary time. Figure[l shows the correlation between both
configurations.

The nonlinear mapping transforms the configurations into each other. Wherebyntiais-
ping corresponds at the timte= 0 to the configuration vectaX and at an arbitrary time point
t > 0 to the current configuration vector

x=¢(X, 1) (1)

A further nonlinear mapping is given by, which is necessary for the subsequent discreti-
sation. The enhanced degrees of freedqrare introduced analogously to the configuration
vectorx:

Xa = ¢a(Xa7 t) (2)
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Figure 1: Reference and current configuration.

2.1 Deformations

The deformation of curves of a continuum during a motion $gadhe deformation gradient
F. This deformation tensor expresses a linear correlatiowdsn the tangent vector of the
reference and current configuratidh, (). The deformation gradient

_9¢ _0x
F = ox = 3% 3

can be decomposed into a purely rotation tems@nd a purely stretch tensaor.
F=R1U (4)

Analogously to the deformation of curves, one gets linearetations for surfacesA(, a) and
volumes {/, v) with the cofactorcof ¥ and the Jacobian determinantof the deformation
gradient:

cof F =JF! J =detF (5)
The enhanced degrees of freedamlead to a deformation gradient of the enhanced degrees of

freedom

0p,  0x,
- 9X 90X ©)
which is included for the description of the whole deforroati The total deformation gradient
is then called the enhanced deformation gradient

Fa

Foh = F g, (7)
2.2 Strains

The deformation gradient yields the right Cauchy-Green strain tengan the domain,
and the left Cauchy-Green strain tengon the domains;:

cC=7"7F b=FF" (8)
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Another strain measure is the Lagrange strain temswhich is formed by the right Cauchy-
Green strain tensar and the unit tensor:

E=—-(C—1) 9)

DN =

The strains with the enhanced degrees of freedom are givémelyght Cauchy-Green strain
tensor

Cenh — j;enhT ?-enh (10)
and the Lagrange strain tensor

Zenh — (Cenh o I) (11)

2.3 Principal stretches

The handling with principal stretches is described.ir [TTHe spectral decomposition of the
right and left Cauchy-Green strain tensor is given by:

3 3
C=) AN'®N 6= An"®n" (12)
a=1

a=1

with the eigenvalues\, and the eigenvector®“ and n®, which are unit vector |(N*|| =
||n*|| = 1). The deformation gradient can be described by the principal stretchgga =
1, 2, 3) and the normalised eigenvectarsandN“ of the tensorg andc:

F Iikan%@N“ (13)
a=1
The eigenvalues, are associated with the principal stretchgs
e = A2 (14)
This leads to the expression of the right Cauchy-Greennsteaisor:
3
c=> NN@N (15)
a=1

with \2 > 0. The derivatives of the eigenvalues with respect to thecjpal stretches and vice
versa are defined as:

O

= 2\, 16
N (16)
N _ 1 ;\;% _ 1
O 2 2\,

The eigenvector®d“ can be calculated by the eigenvalue problem
(C—XNI)N*“=0 (17)
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and the principal stretches, can be derived by the corresponding characteristical polyal

p(A2) = =X+ LA - LA+ =0 (18)
whereby the Invariants,, 5, I3 can be expressed by the principal stretches themselves:
L = trC=X+ A+ )\ (19)

I, = %(112 —tr ) = ATAS AT+ A3 A3

Iy = detC=J% =)\

The derivatives of the principal stretches with respectright Cauchy-Green strain tensor
vary in three cases. In the first case, all principal stresee different\; # Ay # As:

O\ 1
L= Ny M 20
oc 2 (20)
If two of the three principal stretches are different= \, # A3, the derivative follows as:
oN 1 . 3 oy 1 3
ALY — — =— 21
gc ~ M - oc a2 M (21)
In the last possibility, all principal stretches are the sam= )\, = \s:
oN 1 .
2y 22
oc aMm¢ (22)
whereby the tensay/* is defined as:
M=\, ?N*®@ N (23)

The depicted equations in this subsection can be transfetbd notation with the enhanced de-
grees of freedom. The right Cauchy-Green strain teg&dr can be decomposed analogously:

3
Cenh _ Z(Aznh)Q Nenh“ ® Nenh“ (24)
a=1
In the following we deal exclusively with the right Cauchye&én strain tensar since we need
the enhanced degrees of freedom solely for the discretrsati

2.4 Internal variable

The formulation of vicoelastodynamics is based on the gonakinternal variables. There
exist two groups of variables. On the one hand, we have therreadtvariables, which are
measureable and achievable. On the other hand, there amete¢heal variables, which are
history dependend but not measurable. In the case of isotrogterial one gets the current
fictive dynamic state with both variables:

In this connection, the right Cauchy-Green strain tersplays the role of the external variable
and the viscous stretch tensay is the internal variable. This definition leads to a symneetri
strain tensoc, (compare([V]):

C=u'cu’ (26)
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3 FREE ENERGY FUNCTION

The isotropic free energy functiafof a continuum is split into an elastic and a viscous patrt,
see e.g.l16]. While the elastic paft,, is merely dependend on the right Cauchy-Green strain
tensorc, the viscous part of the isotropic free energy functign depends on the strain tensor
Ce.

1/} = wela(c) + wvis(ce> (27)
Alternatively the isotropic free energy function can beatdxd in the principal stretches:
’l/} = wela()\a) + wm’s<)\ea) (28)

Whereby)\, (a = 1, 2, 3) are the well-known principal stretchesofand )., (a = 1, 2, 3) are
the principal stretches of the tensQt

3.1 Ogden model

As material model for viscoelastodynamics we choose thee@gdaterial model. This
model is merely written in dependence of the principal stres. The advantage of the Og-
den model is, that it can be easily fitted to experimental ¢sda [14[ 15]). The free energy
function for the elastic and viscous part is:

n Ndim n
I 'ur Qr )\ 2
Vera(Na) = ;1 o (;1 AT — Ngim) + 1 (J°—1—=2InJ)— ;1 iy InJ (29)

Ndim

= VIS, Qi )\vis =
Gunhed) = DB (TN ) + P (2 = 1= 210 ) = Y e, I,
r=1 r=1

VIS,

a=1

with the Lamé-parameterg,, A and the degree of the polynam for the elastic part as well as
WIth f1,s,., Avis @Nd s, for the viscous part. The summation index is given by therpatar
r. With an increasing parameterthe complexity of the mapped curve increases. The scalar
J is equivalent to the Jacobian determinantcodnd analogously. is equal to the Jacobian
determinant,.

The derivatives of the free energy functignwith respect to the principal stretchas are
called the principal first Piola-Kirchhoff stressBs = 8‘97”;. For the elastic and the viscous part
one gets:

n - n 1 \
Pelaa = Z,ur)\gr 1_Z,ur)\_+2)\ <J2_1) (30)
r=1 r=1 a a

— . avisr_l _ A vis 2 _
Pvisa - E Mvzsq- /\ea E :umsr )\ + 9 )\ (Je 1)
r=1 r=1 Ca Ca

The principal second Piola-Kirchhoff stresses are givel py- A—la %. The parameters of the

Ogden material model correlate with the linear theory adiogyto [15]:

1 n
w= 2 ;O‘rﬂr (31)
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3.2 Derivatives of the free energy function

By means of the principal first Piola-Kirchhoff stresgesof Eq. (30) and the definitions of
the principal stretches with respect to to the right CauGhgen strain tensor of the Subsection
[Z.3 we get the derivatives

awela<)\a> o ndin 8wela(>\a> 8)\a

ac &= 0N dc (32)
awvis()\ea) _ ndin awviS()‘ea) 6)‘6(1
acC, O, aC,

a=1

The derivatives of the viscous free energy part with respetd the variableg” and u; are
necessary as well:

8’1/1112‘3 -1 31%@'3 -1 a’l/}vis -1 awm’s
= T ——" 1] = —24[ - sym
oc % Tag W ou; “ e (33)
4 BALANCES

There exist five balance laws, which are interesting for aipl&ive system. These are the
balance of mass, the balance of linear momentum, the batdrasggular momentum, the first
law of thermodynamics and the balance of entropy, isele [18].

4.1 Balance of mass

The system we are looking at is a closed system. No mass phgssgstem, only energy
transport is allowed. The mass is constant during the wholigom of the continuum. This can
be expressed by:

m:/p(x, t)dv:/po(X)dV:M:const. (34)
B Bo

The massn of the current configuration must be equal to the massf the reference con-
figuration. The deformation of the continuum causes merelyamge in the volumn and the
densityp.

4.2 Balance of linear momentum

The balance of linear momentum is defined as:

d

—J=f 35

17 (35)
The time derivative of the linear momentulrhas to be equal to the external fordesThese

magnitudes are evaluated by integration over the whole doBa

J = /VpodV (36)
Bo

f = /bOdMJr/tOdA
Bo BBO
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By transforming of the surface integrales into volume indé¢gy we get the global form of the
linear momentum theorem:

/(Vpo—bopo—diva>dV:0 (37)
Bo

Thereby merely the mass forcbhg (in 3;) and the surface forces (in 0B8,) are considered.
The surface forces lead to the first Piola-Kirchhoff stressor® which correlates with the
second Piola-Kirchhoff stress tensor

91 (Ao Ac,)

S=2
oc

(38)
through the relation
S=F'eo (39)

The velocity V equals the current velocity in value and direction and therewith the time
derivative of the current configuration vector

If the external forces are zero, it can be shown, that the time derivative of thealimso-
mentum is zero. This yields a constant linear momentum:

J=0 — J = const . (40)

4.3 Balance of angular momentum

The balance of angular momentum reads

d
— L= 41
G L=m (41)

by the angular momenturh and the external momentunas. Both can be described in the
Lagrangian description:

L = /RXV,OOdV (42)
Bo

m = /RXdeM+/RXt0dA
Bo 9Bo
wherebyR defines the distance between an arbitrary prjreind the poink at the evaluation

of the angular momentum. The conversion of the surface riat@&gto a volume integral with
the Gauss’ divergence theorem results in the global angudanentum balance:

/Rx(Vpo—bopo—diviP>dV:0 (43)
Bo

The balance of angular momentum leads to similar resulesthie linear momentum if the
external momentums are zero:

L=0 — L = const. (44)
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4.4 First law of thermodynamics
The first law of thermodynamics yields the following express
H=—Dji (45)

with the internal dissipatio®;); = [, D™ dV, which is specified in the next subsection. The

total energyH is split into the kinetic energy” and the potential energy if one neglects
conservative external forces:

H=T+Vv™ (46)

The kinetic energyl” depends on the reference densityand the velocityV. The potential
energyV ™ can be derived from the free energy function

1

T = 5 [mIvIEav @7)

Bo
yint — /¢(Aa, Ae,) dV
Bo

4.5 Balance of entropy

The local balance of entropy, leading to the dissipafittt of the system, is written as:
.1 ,

for isothermal processes. Employing HQ.1(27) in the loc&tee of entropy, we get:

oY .. O0Yyis - 1 .
——:C— U+ =S > 4
% C 1. U; 25 C 0 (49)

The definition of the second Piola-Kirchhoff stress tensof Eq. (38) leads to

a wm’s
o0u;

S >0 (50)

which defines the non-negative internal dissipation

. 6 ,lvz)vis
ou;

Dt = s (51)

The internal dissipation can be rewritten by the viscous déhstress tensar,;; and the inter-
nal stretch velocity tensat}:

Dint = 5. c Lt (52)
with:
01 .
Yis = 2 o L= a 53
€= c i i (53)
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5 VISCOSITY

For the characterisation of the evolution equation, we raeotropic fourth order tensor.
This tensor is deduced from the fourth order elasticity defils For this reason it is called the
viscosity tensoly. According to [19] the elasticity tensor is split for rubllee material in an
volumetric and a deviatoric part, since these materiale lgagat differences in bulk and shear.
We obtain

E=2 Edev Hdev + Evol Ndim HUOl (54)
with the deviatoric and volumetric tensors

Hdev — sym _ I[vol I[vol —

Q1 (55)

Ndim
The elastic parameters,., = ¢ andE,,, = K are given by the well-known Laéparameters
1, A, and with the bulk modulus:

A=K —

7 (56)

Ndim
This notation is transfered to the viscoelasticity, acowgdo [8]. The fourth order viscosity
tensorV with the parameterg,., andV,,, follows:

V=2 Vdev Hdev + %(ﬂ Ndim I[UOZ (57)

With the symmetric internal variable ang;,, K., 1.;s > 0 to describe the non-negativ dissi-
pation, we have only two restrictions. The symmetric unist1*¥™ of deviatoric tensof?’
has to be changed it = §;; 0,4

I[dev — I[T _I[vol (58)

and the parameters are restricted in the following way:

Vitev > 0 Vol > 2 Ve (59)
Ndim
These guidlines lead to the dissipation:
£V >0 (60)
with:
i =V 1 Ll (61)

6 SPATIAL DISCRETISATION

For the spatial discretisation EAS elements are used, wéntlibit enhanced degrees of
freedom. The reason is that the well-known nonlinear stahdeplacement based elements
lead to locking effects in combination with high Poissonsnbers and high dominance of
bending. This causes a non-physical stiffening of the body.

A remedy could be an underintegration of the Gaussian iateEgr. But this yields in many
cases hourglass effects, which are characterised by nggigahdeformations. The best possi-
bility to remedy these locking effects is the EAS elementoading to [11]. This element can
model large strain for elastic materials as well as for istdtamaterials, see also [20].

10
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6.1 Isoparametric concept

The spatial discretisation is done in conjunction with theparametric concept. Therefore
the physical fields (positiong, q, and the velocities’) and the geometryy) are approximated
with the same global shape functioNs(X) and M, (X), respectively.

Figure 2: Approximation of the domais.

The domainB as well as the boundary of the domdif8 are approximated by the selfé
andoB", as shown in Figuré 2:

TNel Npe
BrB"= | Qa 0B ~ 08" = | ] 09q (62)
el=1 el=1
with the element§).; and the boundary elemeril.,, respectively and the number of elements
ne; and the boundary elements., respectively.
The configuration vectaq, the linear momenturp and the enhanced degrees of freedgm

of each element are now discretised with the shape funcfigX) and M;(X), respectively.
The approximation is as follows:

Nnode

a ~ a,= Y Nq (63)
n=1

Nnode

P ~ py= Y, Nip
n=1
Nenh

4 ~ q,,=> Maq,,
n=1

with the nodes per element,,,. = 4 and the enhanced nodes,;, = 2. The shape functions

11
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N of the four node element, given by

1 1
Ni(§) =7 1-8 (-7 Ny(€) = 7 (14+8) (1+7) (64)
1 1
Na(€) = 7 (1+8) (1—1) Ni(§) = 7 (1= (1+7)
and the bubble mode¥; for the enhanced nodes, defined by
My =1-¢ My = 1-17° (65)
depend on the coordinatésandn of the master elemeilg = [—1, 1] x [—1, 1]. This corre-

lation is depicted in Figure 3. The master elem@ntcan describe an element of the reference
configuration in the domaifs, or an element of the current configuration in the donigin

@
n /_\
5 Fer -
Fas
e
n
A
£,
Jel
RS
Qg
3 3

Figure 3: Isoparametric transformation of the deformatiban element.

The reference configuratiak (£ q,,,) can be interpolated analogously to the current con-
figurationx (£ q,) from Eq.[63 with:

Nnode

@, = > Ni&a, (66)

The transformation of the tangent space is given by the gnasil; andj_,. The transformation
for the enhanced degrees of freedqm, leads to a gradierjt, ;:

g, ¢
Ja = gt =20 o VeNi(e) (67)
I=1
a n
Jel = ﬁzzqm@vﬁ]\f[(f)
aé =1
: 0, _ 1
Jag, — 8—€l:;an®V£MI(E)

12
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The deformation gradients,; and the gradient of the enhanced degrees of freegipptan be
described with the gradients of Eq.167):

aq [ . 1 aqa . 1
.{]:el: < =Je Je_ ?—ae :—d:.]a Je_
aqu l l 1 aqoel el l

(68)

After these evaluations we get the right Cauchy-Greenrstesisorc*" for each element:
enh enh T Lenh
Cel = Tel —{]:el (69)
= (Fa+ For)" (Fa + For,)
The remaining quantities can be derived analogously fan esement.

6.2 Gaussian integration

The volume integrals, as the integrals of EG.](47), for insta have to be integrated nu-
merically. This is done by the Gaussian integration. Thegrdl over the domai$, can be
expressed by the master elem@pt

Nel

/g(X)dV U/ dQel_U/ ¢) det Jo dQn (70)

Bo el=1 Qu el=1 O

Whereby the integration over the boundaries of the mastereht(2; leads to:

1 1 "p
/1/19(57 n) detJy d§ dn~ Zg(gpa 7710) detJel(gpv np) Wy (71)
1/ o

with the weighting factordV,, and the integration point&,,, »,) with the numbem + 1 per
dimension. The degree of accuraeycoincides with2n + 1. The following integrals are of
sizem < 3. Therfore we choose = 1 and obtainn, = 4. The weighting factors are then
Wi = Wy = W3 = W, = 1 with the integration points

& = (——7 _—) 52:(
53 = (

) (72)

7 SEMIDISCRETE HAMILTON'S EQUATIONS
7.1 Hamilton’s formulation

The Hamilton functiornH is given by the Legendre transformation of the Lagrangetfanc
L = T + V™ by means of the linear momentum

oL

P=5c =Mgq (73)
q

as new variable. The Hamilton function then reads:

H=T+Vv™ (74)

13
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whereT’ denotes the kinetic energy

1
TZE/lepdV (75)

Bo

The derivatives of the total enerdy with respect to both variablesandp lead to the semidis-
crete Hamiltons equation:

q = VpH =M"'p (76)
p = —VqH=-F"
The internal force®* can be derived from the internal potential enevgy*:
. (Mg, Ae,) OC
Frt = [ 2l Tl 22 Y 77
/ ocC 0q (77)
Bo

7.2 Hamilton’s formulation with enhanced degrees of freedm

According to [11] there corresponds a third equation to thieaaced degrees of freedom.
This third equation is given by the Hu-Washizu functiolalwhich describes the total potential
for elastic or inelastic materials

M= [¢y—2:7dV (78)
/

This potential defines the configuratignthe deformation tensar, and the first Piola-Kirchhoff
stress tensop as independent variables. Applying standard proceduoss the calculus of
variations yields the governing equations:

g = M'p (79)
p — _Fint
0 = Sint

The internal force® ™ and the enhanced internal forc#é' are given by:

) aw()\enh )\enh) aCenh
mt a 7 eq .
P — / ser e WV (80)
Bo
Sz‘nt _ / aw<)\2nh’ )\g:h) ' aCenh 1V
ocenh ’ aqa
Bo

7.3 Evolution equation

The internal variabley; leads to an additional equation, which is called the evofuéqua-
tion. This equation is given by EJ._{61). With EG.153nd Eq. [3B) we get:

Suis = VL (81)
2cu;! —aawg“ Ul o= VoLt
Rl A

14
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The rateqy; of the viscous stretch tensor is included in the viscousoisidensor.? (see Eq.
(&3),). There is no reason to convert the last equation into tha for = f(c¢, ;). So the
evolution equation is given by:

. 6 ¢vis

-y g ta 2
a‘ui u@ [V ﬂz ﬂl] (8 )

8 TIME DISCRETISATION

The time discretisation has to be consistent with the baldaws introduced in Section
4. For the algorithmic conservation properties we need ancomintegration rule, which is
specified step by step (compaké [9]). The algorithmic pripeare the conservation of linear
momentum and angular momentum and the satisfaction of #éxggialance.

8.1 Time integration

The time axig is divided in equidistant time interval, = [t,,, ¢,,+1] with the interval length
At = t,.1 — t, for a common time integration. Furthermore we introduceraée «,, which
maps the time interval,, to an unit interval0, 1J:

t—t, t—t,

= = 83
“ thal — tn At (83)

The derivative of the variable with respect to time leads to the differential relation
dt =At da (84)

The linear approximation of an arbitrary quantityhich depends on and the derivative with
respect to the variable are given as follows:

o(a) = opra=(1—a) o, +a opyy (85)
do(a)
da
Eq. (Z9) can than be described by:

On41 — %n = Ao

1
qn+1_qn = AtM_l /pn—i—a da (86)
0
1
Pony1 —Pn = —At/F;:iadOé

0
1

0 = At/s;"jada
0

8.2 Algorithmic conservation of linear momentum

The algorithmic balance of linear momentum is fulfilled if
Joi1—J,=0 (87)

It can be easily shown, that this balance is satisfied for angistent time-stepping scheme.

15
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8.3 Algorithmic conservation of angular momentum
The algorithmic balance of angular momentum
Ln+1 - Ln = 0 (88)

is only fulfilled by settingw = 3. This coincides with the midpoint rule for the time discsati
tion.

8.4 Algorithmic fulfillment of the balance of energy
For the algorithmic satisfaction of the balance of energyewrce the following equation:
Hyp1 — H, = —Di™ (89)
The fundamental theorem of integral calculus yields:
1
dH,
Hn+1 - H, = /ﬂ da (90)

da
0

1
in in dTn+a d Vnmfd
(Tn+1 - Tn) + (Vn—i—tl - Vi t) - / ( dao + dOj ) da

It can be shown, that the kinetic energy can be integratedtlgxaith the midpoint rule ¢ =
3)- With this in mind there remains only the fundamental tleeowof integral calculus for the
potential energy :

d " a )\enh )\enh
vint _yint — / / Yot )4V da (91)

0
A further split leads to an equation, Whlch has to be fulfille@ach element:

1
OYnraAg™, AG") 9C™ D Unra(MN, M) DG
oc Oa aG Oa

) da=0 (92)
0
Now we have to minimise the function&l, which relies on additional stressges

G(S, \) = F(S) + AE(S) (93)
with the minimisation functional
1~ -
F§) =8l =535 (94)

and the constraint
1

T 1 en P 8Cenh 0 n+a 6Cz
E(s)zdmﬂ—wn—/(é[_g b 5 T g; :604) da =0 (95)

0
The conditions’? = 0 and%§ = 0 lead to the discrete gradient

81/1 . . 81/1 . enh
wnJrl_Q/}n_ (a‘uz) -Aﬂz (8C€"h) - AC

QY n+d 1
v 2 2 A enh 96
o= (5em) s lacP o)

The indexn + 5 implies the evaluation at the midpoint of the strains.
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9 TIME DISCRETE EQUATIONS

The time discretisation with the discrete gradient of Hgd) (Pields an energy consistent
scheme. The discrete Hamilton’s equation are given by:

anrl - qn - At Mil pn—i—% (97)
Pny1 — P, = —At Fmt
0 — Sznt

mint

with the discretised internal forcd@™ and the discretised enhanced internal foig 8%

. - 8C€nh (qn-f'% ) qa"+L )
F :l/v¢: v (98)
6 qn-i—l
Bo 2

oceh (anr;, d. 1)
=1 — 2 n+3
s™ =‘/v¢: 2 av
dq
Bo

183 1

n+§

The evolution equation is discretised by the ordinary midpale:

6¢vi5 -1 . -1 u@'"+1 — U o
_ ( i )n+1 — ‘uim%v. fu%% — A ) 0 (99)
2
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10 EXAMPLES

As example we show a two dimensional free flying L with an alitielocity vy, = 6 and
an initial angular velocityw = 0.6, see Figurél4. The spatial discretisation is done3by
EAS elements. The side length of the free flying Ll is- 10, so each quadrilateral is of size
1 x 1 in the initial configuration. The:-y coordinate system is fixed on the edge point in the
initial configuration on the symmetry axis of the L. The déyngj, is chosers, 93 and the time
step-size is given byt = 0, 05s.

y

Vo

NN

l

Figure 4: Initial configuration and velocities of the freeifiy L.

10.1 Large strains

The first motion is the free flying L under large strains. There the Lané-parameters of
the Ogden material model are chosen to obtain a very flexibkermal response, see Table 1.

elastic viscous
Lamé-parameters polynom Larparameters polynom
= 1026,09 A =3000 a1 = 1,5 iy, = 1026,09 Ayis = 3000 s, = 1,5
po = —0,78 g = —T7,5  [lyis, = —0,78 Qyisy = — 1,0
pus = 0,17 a3 = 12,0 fiyis, = 0,17 sy, = 12,0

Table 1: Parameters for the soft Ogden material.

The viscosity parameters of the fourth order viscosity eeng are V., = 10000 and
Voot = 50000. The tolerance for the Newton-Raphson iteration is giver by 102 for the
evaluation of the Hamiltons equation and analogously tiierénce is chosen for the iteration
of the evolution equation,;, = 10~8. The simulation rung0s and the results of the simulation
are depicted in the next figures.

The total energyd and the dissipatio;"! are displayed in the Figuré$ 5a ddd 5b. The
total energyH is the whole time of the motion steady decreasing, which jgpesged to be for
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Figure 5: a) Total energyl, b) dissipationD:"}, ¢) A-function of the angular momentum and d) energy balance
H — Di"t = 0 of the free flying L with large strain.

a dissipative material model. The dissipatibf* is always non-negative and its amplitude
slopes down.

The algorithmic conservation properties are shown for thiarice of angular momentum
with the A L-function, see FigurEl5c. This function compares the amgutamentum of two
successive time stepk,(, L,,.1). The energy balance is given in Figlite 5d. Both figures show,
that the angular momentum and the energy balance are faifdrethe underlying tolerance.

The motion of the free flying L is given by the snapshots in Fedfi

N

7/~
L

Figure 6: Snapshots of the free flying L at the time steps[04 8 12 16 20]s.

The color shows the interpolated norm of the Kirchhoff stess 7||.
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10.2 Quasirigid body

The second example is the free flying L perfoming a quasi tigidy motion. This implies
very stiff material parameters for the Ogden material mosks Tabl€l2.

elastic viscous
Lamé-parameters polynom Laparameters polynom
= 10260,96 A =30000 a1 = 1,5 fiys, = 10260,96 A5 = 30000 s, = 1,5
Mo = —7, 78 Qg = —7, 5 Hovisy = —7, 78 Oyigy = —7, 5
pus = 1,70 a3 = 12,0  fiyis, = 1,70 sy, = 12,0

Table 2: Parameters for the higher Ogden material.

The parameters for the viscosity tensérhave not been changed. The tolerance of the
Newton-Raphson iteration for the Hamilton equation andef@dution equation are chosen as
€ = g4 = 107%, The simulation runs once agaifs.

The total energy? and the dissipatio®:" are shown in the Figur€s 7a ddd 7b. Both figures
show the same results as in the aforementioned example. aBheldécay of the energy to a
constant level and of the dissipation to zero is due to thédrignaterial parameters of the
Ogden model.

The algorithmic conservation of angular momentum and themloa of energy are once again
fulfilled in the underlying tolerance, see Figlile 7c &hd 7d.

4270 T T T 1

42651

4260r

T 4255t

Q 0.4
4250}
4245} 02
42405 5 10 15 20 % 5 10 15 20
time time
-9 -9
1.5%10 ‘ : : 3% 10
1 1 2
=
0.50 £R 4
e Q
A 0 | 0
-05 T -1
4
_l _27
) 5 10 15 20 o) 5 10 15 20
time time

Figure 7: a) Total energyl, b) dissipationD:"}, ¢) A-function of the angular momentum and d) energy balance
H — Dit = 0 of the free flying L performing a quasi rigid body motion.

The motion of the free flying L perfoming a quasi rigid body matis given by the snapshots
in the FigurdB.
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\~
'
L

Figure 8: Snapshots of the free flying L at the time steps[04 8 12 16 20]s.

The color shows once again the interpolated norm of the Kiotftstresseg|7||.

11 CONCLUSIONS

In the presented work we deal with an internal, history deped variable, which is chosen
analogously to the stretch tensor. The used material medle€iOgden material model, which
is well-suited for rubberlike materials. Moreover we uséamced assumed strain elements
(EAS) for the discretisation in space and a discrete gradioerthe time discretisation.

The internal variable; leads to a symmetric strain measyydor the viscous part of the free
energy function). Furthermore the evolution equation is realised with atfoorder viscosity
tensorV which guarantees the positivity of the dissipation and yrarsetry of the internal
variable.

The EAS elements for the discretisation in space remedyottierig effects of the nonlinear
displacement based elements, which occurs for high P@saonbers in combination with high
dominance of bending. This effect occurs very often, sintderlike materials have Poissons
numbers ol ~ 0, 5.

The discretisation in time is done by a discrete gradieniciwhas to be included in the
Hamilton’s equation and the equations corresponding teti@anced degrees of freedom. This
leads to a new energy-momentum scheme (EAS-EM method) $ooeglasticity using EAS
elements.

This allows us to simulate large strain deformation visasttity and fulfil at the same time
the conservation properties. The fulfilled conservatiapprties lead to an improved numerical
stability of the system.
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