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Abstract. The main goal of the present work is to describe viscoelasticisotropic material
behaviour with an internal variable, which is derived from the well-known stretch tensorU .
Furthermore it is shown a time integration method, which fulfills the underlying balances of
the system. The discretisation in space is performed by the enhanced assumed strain (EAS)
elements, which remedy the locking effects of the nonlineardisplacement based elements. The
chosen material model is the Ogden material model. This model depends merely on principal
stretches. The theory is confirmed by two examples of a free flying L.
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1 INTRODUCTION

The numerical implementation of the concept of internal variables for viscoelastic material
is increasingly performed only since [1]. A further development of this approach was done by
[2, 3, 4]. These papers deal with numerical simulations for isothermal processes. In [5] was
developed a concrete model with a multiplicative decomposition of the deformation gradient in
an elastic and inelastic part. This decomposition is motivated by the transient network theory. A
further work on this micromechanical level was done in [6]. Here in the level of continuum me-
chanics a fictive intermediate configuration is described. This configuration can be interpreted
as a real existing intermediate configuration on molecular level. The usage of the internal vari-
ableUi is motivated by [7]. For isotropic materials the invariantsof the elastic strain measure
Ce, usingCi orUi, are the same.

The approach of the multiplicative split is also used in one of the newest works [8], which
deals with viscoelastic materials in dynamics. Therein an internal variableCi is used, which is
derived by the right Cauchy-Green strain tensor for isotropic material behaviour. Moreover, the
conservation properties are fulfilled up to the underlying tolerance of the Newton-Raphson iter-
ation of the system. This leads to an enhanced numerical stability. The conservation properties
are already mentioned in [9] and the references therein. This papers confirm the necessity of al-
gorithmic conservation properties. The discretisation intime leads back to the discrete gradient
of [10].

The well-known EAS elements for the spatial discretisationare derived by the Hu-Washizu
functional which is mentioned in the works [11, 12]. These elements remedy the locking effect
of the nonlinear standard displacement based elements. A great advantage for high Poissons
number (rubberlike materials) in combination with high dominance of bending. A disadvantage
is the instability under pressure loads, compare [13].

The Ogden model as material model is well-suited for rubberlike material. The main ad-
vantage of the Ogden material model is, that it can be well adapted to experimental data, see
[14, 15]. According to [16], plastics, like rubbers become more and more important in the class
of technical materials. This model depends only on principal stretches. A very compact il-
lustration of the principal stretches in conjunction with quasi-incompressible elasticity include
[17].

2 KINEMATICS

In order to describe a motion of a continuum a reference configuration in the domainB0

and a current configuration in the domainBt, is necessary. The continuumB can therefore be
specified at the timet = 0 and an arbitrary timet. Figure 1 shows the correlation between both
configurations.

The nonlinear mappingφ transforms the configurations into each other. Whereby thismap-
ping corresponds at the timet = 0 to the configuration vectorX and at an arbitrary time point
t > 0 to the current configuration vector

x = φ(X, t) (1)

A further nonlinear mapping is given byφα, which is necessary for the subsequent discreti-
sation. The enhanced degrees of freedomxα are introduced analogously to the configuration
vectorx:

xα = φα(Xα, t) (2)
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Figure 1: Reference and current configuration.

2.1 Deformations

The deformation of curves of a continuum during a motion leads to the deformation gradient
F . This deformation tensor expresses a linear correlation between the tangent vector of the
reference and current configuration (T, t). The deformation gradient

F =
∂φ

∂X
=
∂ x

∂X
(3)

can be decomposed into a purely rotation tensorR and a purely stretch tensorU:

F = R U (4)

Analogously to the deformation of curves, one gets linear correlations for surfaces (A, a) and
volumes (V , v) with the cofactorcof F and the Jacobian determinantJ of the deformation
gradient:

cof F = J F −1 J = detF (5)

The enhanced degrees of freedomxα lead to a deformation gradient of the enhanced degrees of
freedom

Fα =
∂φα

∂X
=
∂ xα

∂X
(6)

which is included for the description of the whole deformation. The total deformation gradient
is then called the enhanced deformation gradient

F enh = F + Fα (7)

2.2 Strains

The deformation gradientF yields the right Cauchy-Green strain tensorC in the domainB0

and the left Cauchy-Green strain tensorb in the domainBt:

C = F T F b = F F T (8)
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Another strain measure is the Lagrange strain tensorE which is formed by the right Cauchy-
Green strain tensorC and the unit tensorI :

E =
1

2
(C − I ) (9)

The strains with the enhanced degrees of freedom are given bythe right Cauchy-Green strain
tensor

C enh = F enhT
F enh (10)

and the Lagrange strain tensor

Eenh =
1

2
(C enh − I ) (11)

2.3 Principal stretches

The handling with principal stretches is described in [17].The spectral decomposition of the
right and left Cauchy-Green strain tensor is given by:

C =

3
∑

a=1

λ̄a Na ⊗ Na
b =

3
∑

a=1

λ̄a n
a ⊗ na (12)

with the eigenvalues̄λa and the eigenvectorsNa and na, which are unit vector (||Na|| =
||na|| = 1). The deformation gradientF can be described by the principal stretchesλa (a =
1, 2, 3) and the normalised eigenvectorsna andNa of the tensorsb andC :

F =
3

∑

a=1

λa n
a ⊗ Na (13)

The eigenvalues̄λa are associated with the principal stretchesλa:

λ̄a = λ2
a (14)

This leads to the expression of the right Cauchy-Green strain tensor:

C =

3
∑

a=1

λ2
aN

a ⊗Na (15)

with λ2
a > 0. The derivatives of the eigenvalues with respect to the principal stretches and vice

versa are defined as:

∂λ̄a

∂λa
= 2 λa (16)

∂λa

∂λ̄a
=

1

2
λ̄
−

1

2
a =

1

2 λa

The eigenvectorsNa can be calculated by the eigenvalue problem

(C − λ2
a I )Na = 0 (17)
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and the principal stretchesλa can be derived by the corresponding characteristical polynomial

p(λ2
a) := −λ6

a + I1 λ
4
a − I2 λ

2
a + I3 = 0 (18)

whereby the InvariantsI1, I2, I3 can be expressed by the principal stretches themselves:

I1 = tr C = λ2
1 + λ2

2 + λ2
3 (19)

I2 =
1

2
(I2

1 − tr C 2) = λ2
1 λ

2
2 + λ2

1 λ
2
3 + λ2

2 λ
2
3

I3 = det C = J2 = λ2
1 λ

2
2 λ

2
3

The derivatives of the principal stretches with respect to the right Cauchy-Green strain tensor
vary in three cases. In the first case, all principal stretches are differentλ1 6= λ2 6= λ3:

∂λa

∂C
=

1

2
λaM

a (20)

If two of the three principal stretches are differentλ1 = λ2 6= λ3, the derivative follows as:

∂λ1

∂C
=

1

2
λ1 (C−1 −M

3)
∂λ3

∂C
=

1

2
λ3 M

3 (21)

In the last possibility, all principal stretches are the sameλ1 = λ2 = λ3:

∂λ1

∂C
=

1

2
λ1 C

−1 (22)

whereby the tensorM a is defined as:

M a = λ−2
a Na ⊗ Na (23)

The depicted equations in this subsection can be transferedto the notation with the enhanced de-
grees of freedom. The right Cauchy-Green strain tensorC enh can be decomposed analogously:

C enh =
3

∑

a=1

(λenha )2 Nenha ⊗Nenha

(24)

In the following we deal exclusively with the right Cauchy-Green strain tensorC since we need
the enhanced degrees of freedom solely for the discretisation.

2.4 Internal variable

The formulation of vicoelastodynamics is based on the concept of internal variables. There
exist two groups of variables. On the one hand, we have the external variables, which are
measureable and achievable. On the other hand, there are theinternal variables, which are
history dependend but not measurable. In the case of isotropic material one gets the current
fictive dynamic state with both variables:

(C , Ui) (25)

In this connection, the right Cauchy-Green strain tensorC plays the role of the external variable
and the viscous stretch tensorUi is the internal variable. This definition leads to a symmetric
strain tensorCe (compare [7]):

Ce = U
−1
i C U

−1
i (26)
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3 FREE ENERGY FUNCTION

The isotropic free energy functionψ of a continuum is split into an elastic and a viscous part,
see e.g. [6]. While the elastic partψela is merely dependend on the right Cauchy-Green strain
tensorC , the viscous part of the isotropic free energy functionψvis depends on the strain tensor
Ce:

ψ = ψela(C) + ψvis(Ce) (27)

Alternatively the isotropic free energy function can be described in the principal stretches:

ψ = ψela(λa) + ψvis(λea
) (28)

Wherebyλa (a = 1, 2, 3) are the well-known principal stretches ofC andλea
(a = 1, 2, 3) are

the principal stretches of the tensorCe.

3.1 Ogden model

As material model for viscoelastodynamics we choose the Ogden material model. This
model is merely written in dependence of the principal stretches. The advantage of the Og-
den model is, that it can be easily fitted to experimental data(see [14, 15]). The free energy
function for the elastic and viscous part is:

ψela(λa) =
n

∑

r=1

µr

αr
(

ndim
∑

a=1

λαr

a − ndim) +
λ

4
(J2 − 1 − 2 ln J) −

n
∑

r=1

µr ln J (29)

ψvis(λea
) =

n
∑

r=1

µvisr

αvisr

(

ndim
∑

a=1

λαvisr
ea

− ndim) +
λvis

4
(J2
e − 1 − 2 ln Je) −

n
∑

r=1

µvisr
ln Je

with the Laḿe-parametersµr, λ and the degree of the polynomαr for the elastic part as well as
with µvisr

, λvis andαvisr
for the viscous part. The summation index is given by the parameter

r. With an increasing parameterr the complexity of the mapped curve increases. The scalar
J is equivalent to the Jacobian determinant ofC and analogouslyJe is equal to the Jacobian
determinantCe.

The derivatives of the free energy functionψ with respect to the principal stretchesλa are
called the principal first Piola-Kirchhoff stressesPa = ∂ψ

∂λa
. For the elastic and the viscous part

one gets:

Pelaa
=

n
∑

r=1

µr λ
αr−1
a −

n
∑

r=1

µr
1

λa
+

λ

2 λa
(J2 − 1) (30)

Pvisa
=

n
∑

r=1

µvisr
λαvisr−1
ea

−
n

∑

r=1

µvisr

1

λea

+
λvis

2 λea

(J2
e − 1)

The principal second Piola-Kirchhoff stresses are given bySa = 1

λa

∂ψ

∂λa
. The parameters of the

Ogden material model correlate with the linear theory according to [15]:

µ =
1

2

n
∑

r=1

αr µr (31)
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3.2 Derivatives of the free energy function

By means of the principal first Piola-Kirchhoff stressesPa of Eq. (30) and the definitions of
the principal stretches with respect to to the right Cauchy-Green strain tensor of the Subsection
2.3 we get the derivatives

∂ ψela(λa)

∂C
=

ndim
∑

a=1

∂ ψela(λa)

∂λa

∂λa

∂C
(32)

∂ ψvis(λea
)

∂Ce
=

ndim
∑

a=1

∂ ψvis(λea
)

∂λea

∂λea

∂Ce

The derivatives of the viscous free energy part with respectto to the variablesC andUi are
necessary as well:

∂ ψvis

∂C
= U−1

i

∂ ψvis

∂Ce
U−1
i

∂ ψvis

∂Ui

= −2U−1
i

∂ ψvis

∂Ce
: I

sym (33)

4 BALANCES

There exist five balance laws, which are interesting for a dissipative system. These are the
balance of mass, the balance of linear momentum, the balanceof angular momentum, the first
law of thermodynamics and the balance of entropy, see [18].

4.1 Balance of mass

The system we are looking at is a closed system. No mass passesthe system, only energy
transport is allowed. The mass is constant during the whole motion of the continuum. This can
be expressed by:

m =

∫

Bt

ρ(x, t) d v =

∫

B0

ρ0(X) dV = M = const . (34)

The massm of the current configuration must be equal to the massM of the reference con-
figuration. The deformation of the continuum causes merely achange in the volumnv and the
densityρ.

4.2 Balance of linear momentum

The balance of linear momentum is defined as:

d

d t
J = f (35)

The time derivative of the linear momentumJ has to be equal to the external forcesf . These
magnitudes are evaluated by integration over the whole domain B0:

J =

∫

B0

V ρ0 dV (36)

f =

∫

B0

b0 dM +

∫

∂B0

t0 dA
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By transforming of the surface integrales into volume integrals, we get the global form of the
linear momentum theorem:

∫

B0

(

V̇ ρ0 − b0 ρ0 − div P
)

dV = 0 (37)

Thereby merely the mass forcesb0 (in B0) and the surface forcest0 (in ∂B0) are considered.
The surface forces lead to the first Piola-Kirchhoff stress tensorP which correlates with the
second Piola-Kirchhoff stress tensor

S = 2
∂ ψ(λa, λea

)

∂C
(38)

through the relation

S = F −1 P (39)

The velocityV equals the current velocityv in value and direction and therewith the time
derivative of the current configuration vectorx.

If the external forcesf are zero, it can be shown, that the time derivative of the linear mo-
mentum is zero. This yields a constant linear momentum:

J̇ = 0 → J = const . (40)

4.3 Balance of angular momentum

The balance of angular momentum reads

d

d t
L = m (41)

by the angular momentumL and the external momentumsm. Both can be described in the
Lagrangian description:

L =

∫

B0

R × V ρ0 dV (42)

m =

∫

B0

R × b0 dM +

∫

∂B0

R × t0 dA

wherebyR defines the distance between an arbitrary pointx0 and the pointx at the evaluation
of the angular momentum. The conversion of the surface integral into a volume integral with
the Gauss’ divergence theorem results in the global angularmomentum balance:

∫

B0

R ×
(

V̇ ρ0 − b0 ρ0 − div P
)

dV = 0 (43)

The balance of angular momentum leads to similar results like the linear momentum if the
external momentums are zero:

L̇ = 0 → L = const . (44)
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4.4 First law of thermodynamics

The first law of thermodynamics yields the following expression:

Ḣ = −Dint
tot (45)

with the internal dissipationDint
tot =

∫

B0
Dint dV , which is specified in the next subsection. The

total energyH is split into the kinetic energyT and the potential energyV int if one neglects
conservative external forces:

H = T + V int (46)

The kinetic energyT depends on the reference densityρ0 and the velocityV. The potential
energyV int can be derived from the free energy functionψ:

T =
1

2

∫

B0

ρ0 ||V||2 dV (47)

V int =

∫

B0

ψ(λa, λea
) dV

4.5 Balance of entropy

The local balance of entropy, leading to the dissipationDint of the system, is written as:

− ψ̇ +
1

2
S : Ċ ≥ 0 (48)

for isothermal processes. Employing Eq. (27) in the local balance of entropy, we get:

− ∂ ψ

∂C
: Ċ − ∂ ψvis

∂Ui

: U̇i +
1

2
S : Ċ ≥ 0 (49)

The definition of the second Piola-Kirchhoff stress tensorS of Eq. (38) leads to

− ∂ ψvis

∂Ui

: U̇i ≥ 0 (50)

which defines the non-negative internal dissipation

Dint := −∂ ψvis
∂Ui

: U̇i (51)

The internal dissipation can be rewritten by the viscous Mandel stress tensorΣvis and the inter-
nal stretch velocity tensorLui :

Dint = Σvis : Lui (52)

with:

Σvis = 2 C
∂ ψvis

∂C
Lui = U−1

i U̇i (53)
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5 VISCOSITY

For the characterisation of the evolution equation, we needan isotropic fourth order tensor.
This tensor is deduced from the fourth order elasticity tensor E. For this reason it is called the
viscosity tensorV. According to [19] the elasticity tensor is split for rubberlike material in an
volumetric and a deviatoric part, since these materials have great differences in bulk and shear.
We obtain

E = 2Edev I
dev + Evol ndim I

vol (54)

with the deviatoric and volumetric tensors

I
dev = I

sym − I
vol

I
vol =

1

ndim
I ⊗ I (55)

The elastic parametersEdev = µ andEvol = K are given by the well-known Laḿe-parameters
µ, λ, and with the bulk modulusK:

λ = K − 2

ndim
µ (56)

This notation is transfered to the viscoelasticity, according to [8]. The fourth order viscosity
tensorV with the parametersVdev andVvol follows:

V = 2 Vdev I
dev + Vvol ndim I

vol (57)

With the symmetric internal variable andλvis, Kvis, µvis > 0 to describe the non-negativ dissi-
pation, we have only two restrictions. The symmetric unit tensorIsym of deviatoric tensorIdev

has to be changed inIT = δil δjk:

I
dev = I

T − I
vol (58)

and the parameters are restricted in the following way:

Vdev > 0 Vvol >
2 Vdev
ndim

(59)

These guidlines lead to the dissipation:

Lui : V : Lui ≥ 0 (60)

with:

Σvis = V : Lui (61)

6 SPATIAL DISCRETISATION

For the spatial discretisation EAS elements are used, whichexhibit enhanced degrees of
freedom. The reason is that the well-known nonlinear standard displacement based elements
lead to locking effects in combination with high Poissons numbers and high dominance of
bending. This causes a non-physical stiffening of the body.

A remedy could be an underintegration of the Gaussian integration. But this yields in many
cases hourglass effects, which are characterised by non-physical deformations. The best possi-
bility to remedy these locking effects is the EAS element, according to [11]. This element can
model large strain for elastic materials as well as for inelastic materials, see also [20].

10



Melanie Müller, Michael Groß and Peter Betsch

6.1 Isoparametric concept

The spatial discretisation is done in conjunction with the isoparametric concept. Therefore
the physical fields (positionsq, qα and the velocitiesv) and the geometry (q0) are approximated
with the same global shape functionsNI(X) andMI(X), respectively.

∂B

∂BhB

Bh

Ωel

Figure 2: Approximation of the domainB.

The domainB as well as the boundary of the domain∂B are approximated by the setsBh
and∂Bh, as shown in Figure 2:

B ≈ Bh =

nel
⋃

el=1

Ωel ∂B ≈ ∂Bh =

nbe
⋃

el=1

∂Ωel (62)

with the elementsΩel and the boundary elements∂Ωel, respectively and the number of elements
nel and the boundary elementsnbe, respectively.

The configuration vectorq, the linear momentump and the enhanced degrees of freedomqα
of each element are now discretised with the shape functionsNI(X) andMI(X), respectively.
The approximation is as follows:

q ≈ qel =

nnode
∑

n=1

NI qI (63)

p ≈ pel =

nnode
∑

n=1

NI pI

qα ≈ qαel
=

nenh
∑

n=1

MI qαI

with the nodes per elementnnode = 4 and the enhanced nodesnenh = 2. The shape functions
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NI of the four node element, given by

N1(ξ) =
1

4
(1 − ξ) (1 − η) N3(ξ) =

1

4
(1 + ξ) (1 + η) (64)

N2(ξ) =
1

4
(1 + ξ) (1 − η) N4(ξ) =

1

4
(1 − ξ) (1 + η)

and the bubble modesMI for the enhanced nodes, defined by

M1 = 1 − ξ2 M2 = 1 − η2 (65)

depend on the coordinatesξ andη of the master elementΩ� = [−1, 1] × [−1, 1]. This corre-
lation is depicted in Figure 3. The master elementΩ� can describe an element of the reference
configuration in the domainB0 or an element of the current configuration in the domainBt.
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ξ

ξ

ξ

η

ηη

φ

φα

Fel

Fαel

Ωel

jel

jαel

Jel

φ(Ωel)

φα(Ωel)

Ω�

ξ1 ξ2

ξ3ξ4

Figure 3: Isoparametric transformation of the deformationof an element.

The reference configurationX (
∧
= q0el

) can be interpolated analogously to the current con-

figurationx (∧= qel) from Eq. 631 with:

q0el
=

nnode
∑

n=1

NI(ξ)q0I
(66)

The transformation of the tangent space is given by the gradientsJel andjel. The transformation
for the enhanced degrees of freedomqαel

leads to a gradientjαel
:

jel =
∂ qel
∂ ξ

=

n
∑

I=1

qI ⊗∇ξNI(ξ) (67)

Jel =
∂ q0el

∂ ξ
=

n
∑

I=1

q0I
⊗∇ξNI(ξ)

jαel
=

∂ qαel

∂ ξ
=

n
∑

I=1

qαI
⊗∇ξMI(ξ)
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The deformation gradientsFel and the gradient of the enhanced degrees of freedomFαel
can be

described with the gradients of Eq. (67):

Fel =
∂ qel
∂ q0el

= jel J
−1

el Fαel
=
∂ qαel

∂ q0el

= jαel
J−1

el (68)

After these evaluations we get the right Cauchy-Green strain tensorC enhel for each element:

C enhel = F enh
el

T
F enh
el (69)

= (Fel + Fαel
)T (Fel + Fαel

)

The remaining quantities can be derived analogously for each element.

6.2 Gaussian integration

The volume integrals, as the integrals of Eq. (47), for instance, have to be integrated nu-
merically. This is done by the Gaussian integration. The integral over the domainB0 can be
expressed by the master elementΩ�:

∫

B0

g(X) dV =

nel
⋃

el=1

∫

Ωel

g(X) d Ωel =

nel
⋃

el=1

∫

Ω�

g(ξ) detJel d Ω� (70)

Whereby the integration over the boundaries of the masterelementΩ� leads to:

∫ 1

−1

∫ 1

−1

g(ξ, η) detJel d ξ d η ≈
np
∑

p=1

g(ξp, ηp) detJel(ξp, ηp)Wp (71)

with the weighting factorsWp and the integration points(ξp, ηp) with the numbern + 1 per
dimension. The degree of accuracym coincides with2n + 1. The following integrals are of
sizem 6 3. Therfore we choosen = 1 and obtainnp = 4. The weighting factors are then
W1 = W2 = W3 = W4 = 1 with the integration points

ξ1 = (− 1√
3
, − 1√

3
) ξ2 = (

1√
3
, − 1√

3
) (72)

ξ3 = (
1√
3
,

1√
3
) ξ4 = (− 1√

3
,

1√
3
)

7 SEMIDISCRETE HAMILTON’S EQUATIONS

7.1 Hamilton’s formulation

The Hamilton functionH is given by the Legendre transformation of the Lagrange function
L = T + V int by means of the linear momentum

p =
∂L

∂ q̇
= Mq̇ (73)

as new variable. The Hamilton function then reads:

H = T + V int (74)
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whereT denotes the kinetic energy

T =
1

2

∫

B0

pM−1 p dV (75)

The derivatives of the total energyH with respect to both variablesq andp lead to the semidis-
crete Hamiltons equation:

q̇ = ∇pH = M−1 p (76)

ṗ = −∇qH = −Fint

The internal forcesFint can be derived from the internal potential energyV int:

Fint =

∫

B0

∂ψ(λa, λea
)

∂C
:
∂C

∂ q
dV (77)

7.2 Hamilton’s formulation with enhanced degrees of freedom

According to [11] there corresponds a third equation to the enhanced degrees of freedom.
This third equation is given by the Hu-Washizu functionalΠ, which describes the total potential
for elastic or inelastic materials

Π =

∫

B0

ψ − P : Fα dV (78)

This potential defines the configurationφ, the deformation tensorFα and the first Piola-Kirchhoff
stress tensorP as independent variables. Applying standard procedures from the calculus of
variations yields the governing equations:

q̇ = M−1 p (79)

ṗ = −Fint

0 = Sint

The internal forcesFint and the enhanced internal forcesSint are given by:

Fint =

∫

B0

∂ψ(λenha , λenhea
)

∂C enh
:
∂C enh

∂ q
dV (80)

Sint =

∫

B0

∂ψ(λenha , λenhea
)

∂C enh
:
∂C enh

∂ qα
dV

7.3 Evolution equation

The internal variableUi leads to an additional equation, which is called the evolution equa-
tion. This equation is given by Eq. (61). With Eq. (53)1 and Eq. (33) we get:

Σvis = V : Lui (81)

2 C U−1
i

∂ ψvis

∂Ce
U−1
i = V : Lui

−∂ ψvis
∂Ui

= U−1
i [V : Lui ]

14
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The rateU̇i of the viscous stretch tensor is included in the viscous velocity tensorLui (see Eq.
(53)2). There is no reason to convert the last equation into the form U̇i = f(C , Ui). So the
evolution equation is given by:

− ∂ ψvis

∂Ui

= U−1
i [V : U−1

i U̇i] (82)

8 TIME DISCRETISATION

The time discretisation has to be consistent with the balance laws introduced in Section
4. For the algorithmic conservation properties we need a common integration rule, which is
specified step by step (compare [9]). The algorithmic properties are the conservation of linear
momentum and angular momentum and the satisfaction of the energy balance.

8.1 Time integration

The time axist is divided in equidistant time intervalsTn = [tn, tn+1] with the interval length
∆t = tn+1 − tn for a common time integration. Furthermore we introduce a variableα, which
maps the time intervalTn to an unit interval[0, 1]:

α =
t− tn

tn+1 − tn
=
t− tn

∆t
(83)

The derivative of the variableα with respect to timet leads to the differential relation

d t = ∆t dα (84)

The linear approximation of an arbitrary quantity◦ which depends onα and the derivative with
respect to the variableα are given as follows:

◦ (α) ≡ ◦n+α = (1 − α) ◦n +α ◦n+1 (85)
d ◦(α)

dα
= ◦n+1 − ◦n = ∆◦

Eq. (79) can than be described by:

qn+1 − qn = ∆tM−1

1
∫

0

pn+α dα (86)

pn+1 − pn = −∆t

1
∫

0

Fint
n+α dα

0 = ∆t

1
∫

0

Sintn+α dα

8.2 Algorithmic conservation of linear momentum

The algorithmic balance of linear momentum is fulfilled if

Jn+1 − Jn = 0 (87)

It can be easily shown, that this balance is satisfied for any consistent time-stepping scheme.
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8.3 Algorithmic conservation of angular momentum

The algorithmic balance of angular momentum

Ln+1 − Ln = 0 (88)

is only fulfilled by settingα = 1

2
. This coincides with the midpoint rule for the time discretisa-

tion.

8.4 Algorithmic fulfillment of the balance of energy

For the algorithmic satisfaction of the balance of energy weenforce the following equation:

Hn+1 −Hn = −Dint
tot (89)

The fundamental theorem of integral calculus yields:

Hn+1 −Hn =

1
∫

0

dHn+α

dα
dα (90)

(Tn+1 − Tn) + (V int
n+1 − V int

n ) =

1
∫

0

(

dTn+α

dα
+

dV int
n+α

dα

)

dα

It can be shown, that the kinetic energy can be integrated exactly with the midpoint rule (α =
1

2
). With this in mind there remains only the fundamental theorem of integral calculus for the

potential energyV int:

V int
n+1 − V int

n =

1
∫

0

∫

B0

dψn+α(λ
enh
a , λenhea

)

dα
dV dα (91)

A further split leads to an equation, which has to be fulfilledin each element:

ψn+1 − ψn −
1

∫

0

(

∂ ψn+α(λ
enh
a , λenhea

)

∂C enh
:
∂C enh

∂α
+
∂ ψn+α(λ

enh
a , λenhea

)

∂Ci
:
∂Ci

∂α

)

dα = 0 (92)

Now we have to minimise the functionalG, which relies on additional stressesS̃ :

G(S̃ , λ) = F (S̃) + λE(S̃) (93)

with the minimisation functional

F (S̃) =
1

2
||S̃ ||2 =

1

2
S̃ : S̃ (94)

and the constraint

E(S̃) = ψn+1 − ψn −
1

∫

0

(

1

2
[S enh + S̃ ] :

∂C enh

∂α
+
∂ ψn+α

∂Ci
:
∂Ci

∂α

)

dα = 0 (95)

The conditions∂G
∂S̃

= 0 and ∂G
∂λ

= 0 lead to the discrete gradient

∇̄ψ =

(

∂ ψ

∂C enh

)

n+
1

2

+

ψn+1 − ψn −
(

∂ ψ

∂Ui

)

n+
1

2

: ∆Ui −
(

∂ ψ

∂C enh

)

n+
1

2

: ∆C enh

||∆C enh||2 ∆C
enh (96)

The indexn+ 1

2
implies the evaluation at the midpoint of the strains.
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9 TIME DISCRETE EQUATIONS

The time discretisation with the discrete gradient of Eq. (96) yields an energy consistent
scheme. The discrete Hamilton’s equation are given by:

qn+1 − qn = ∆tM−1 pn+
1

2

(97)

pn+1 − pn = −∆t F̄
int

0 = S̄
int

with the discretised internal forces̄F
int

and the discretised enhanced internal forcesS̄
int

:

F̄
int

=

∫

B0

∇̄ψ :

∂C enh
(

qn+
1

2
, qα

n+ 1
2

)

∂ qn+
1

2

dV (98)

S̄
int

=

∫

B0

∇̄ψ :

∂C enh
(

qn+
1

2

, qα
n+ 1

2

)

∂ qα
n+ 1

2

dV

The evolution equation is discretised by the ordinary midpoint rule:

−
(

∂ψvis

∂Ui

)

n+
1

2

− U−1
i
n+1

2

V : U−1
i
n+ 1

2

(

Uin+1
−Uin

∆t

)

= 0 (99)
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10 EXAMPLES

As example we show a two dimensional free flying L with an initial velocity v0 = 6 and
an initial angular velocityω = 0.6, see Figure 4. The spatial discretisation is done by36
EAS elements. The side length of the free flying L isl = 10, so each quadrilateral is of size
1 × 1 in the initial configuration. Thex-y coordinate system is fixed on the edge point in the
initial configuration on the symmetry axis of the L. The density ρ0 is chosen8, 93 and the time
step-size is given by∆t = 0, 05s.

y

x

l

l

ω

v0

Figure 4: Initial configuration and velocities of the free flying L.

10.1 Large strains

The first motion is the free flying L under large strains. Therefore the Laḿe-parameters of
the Ogden material model are chosen to obtain a very flexible material response, see Table 1.

elastic viscous
Laḿe-parameters polynom Laḿe-parameters polynom

µ1 = 1026, 09 λ = 3000 α1 = 1, 5 µvis1 = 1026, 09 λvis = 3000 αvis1 = 1, 5
µ2 = −0, 78 α2 = −7, 5 µvis2 = −0, 78 αvis2 = −7, 5
µ3 = 0, 17 α3 = 12, 0 µvis3 = 0, 17 αvis3 = 12, 0

Table 1: Parameters for the soft Ogden material.

The viscosity parameters of the fourth order viscosity tensor V are Vdev = 10000 and
Vvol = 50000. The tolerance for the Newton-Raphson iteration is given byε = 10−8 for the
evaluation of the Hamiltons equation and analogously this tolerance is chosen for the iteration
of the evolution equationεvis = 10−8. The simulation runs20s and the results of the simulation
are depicted in the next figures.

The total energyH and the dissipationDint
tot are displayed in the Figures 5a and 5b. The

total energyH is the whole time of the motion steady decreasing, which is supposed to be for
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Figure 5: a) Total energyH , b) dissipationDint

tot
, c) ∆-function of the angular momentum and d) energy balance

Ḣ − D
int

tot
= 0 of the free flying L with large strain.

a dissipative material model. The dissipationDint is always non-negative and its amplitude
slopes down.

The algorithmic conservation properties are shown for the balance of angular momentum
with the∆L-function, see Figure 5c. This function compares the angular momentum of two
successive time steps (Ln, Ln+1). The energy balance is given in Figure 5d. Both figures show,
that the angular momentum and the energy balance are fulfilled for the underlying tolerance.

The motion of the free flying L is given by the snapshots in Figure 6.

Figure 6: Snapshots of the free flying L at the time stepst = [0 4 8 12 16 20]s.

The color shows the interpolated norm of the Kirchhoff stresses||τ ||.
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10.2 Quasi rigid body

The second example is the free flying L perfoming a quasi rigidbody motion. This implies
very stiff material parameters for the Ogden material model, see Table 2.

elastic viscous
Laḿe-parameters polynom Laḿe-parameters polynom

µ1 = 10260, 96 λ = 30000 α1 = 1, 5 µvis1 = 10260, 96 λvis = 30000 αvis1 = 1, 5
µ2 = −7, 78 α2 = −7, 5 µvis2 = −7, 78 αvis2 = −7, 5
µ3 = 1, 70 α3 = 12, 0 µvis3 = 1, 70 αvis3 = 12, 0

Table 2: Parameters for the higher Ogden material.

The parameters for the viscosity tensorV have not been changed. The tolerance of the
Newton-Raphson iteration for the Hamilton equation and theevolution equation are chosen as
ε = εvis = 10−6. The simulation runs once again20s.

The total energyH and the dissipationDint
tot are shown in the Figures 7a and 7b. Both figures

show the same results as in the aforementioned example. The fast decay of the energy to a
constant level and of the dissipation to zero is due to the higher material parameters of the
Ogden model.

The algorithmic conservation of angular momentum and the balance of energy are once again
fulfilled in the underlying tolerance, see Figure 7c and 7d.
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Figure 7: a) Total energyH , b) dissipationDint

tot
, c) ∆-function of the angular momentum and d) energy balance

Ḣ − D
int

tot
= 0 of the free flying L performing a quasi rigid body motion.

The motion of the free flying L perfoming a quasi rigid body motion is given by the snapshots
in the Figure 8.
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Figure 8: Snapshots of the free flying L at the time stepst = [0 4 8 12 16 20]s.

The color shows once again the interpolated norm of the Kirchhoff stresses||τ ||.

11 CONCLUSIONS

In the presented work we deal with an internal, history dependend variable, which is chosen
analogously to the stretch tensor. The used material model is the Ogden material model, which
is well-suited for rubberlike materials. Moreover we use enhanced assumed strain elements
(EAS) for the discretisation in space and a discrete gradient for the time discretisation.

The internal variableUi leads to a symmetric strain measureCe for the viscous part of the free
energy functionψ. Furthermore the evolution equation is realised with a fourth order viscosity
tensorV which guarantees the positivity of the dissipation and the symmetry of the internal
variable.

The EAS elements for the discretisation in space remedy the locking effects of the nonlinear
displacement based elements, which occurs for high Poissons numbers in combination with high
dominance of bending. This effect occurs very often, since rubberlike materials have Poissons
numbers ofν ≈ 0, 5.

The discretisation in time is done by a discrete gradient, which has to be included in the
Hamilton’s equation and the equations corresponding to theenhanced degrees of freedom. This
leads to a new energy-momentum scheme (EAS-EM method) for viscoelasticity using EAS
elements.

This allows us to simulate large strain deformation viscoelasticity and fulfil at the same time
the conservation properties. The fulfilled conservation properties lead to an improved numerical
stability of the system.
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