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Abstract

In this work, two different structure-preserving time igtators for coupled thermomechanical problems are cordpadrkis
comparison is done in the context of an adiabatic thermteldsuble pendulum. On the one hand a finite difference setiem
based on a Poissonian formulation of thermodynamics (GHRERmework), on the other hand a hybrid (continuous/disco
tinuous) Galerkin method in time is formulated in the Lagjian setting. The numerical example of a double pendulurwsho
that both time integrators possess an excellent longtiatglsy as well as an emersed robustness regarding large $tep
sizes. These advantageous properties are due to the latgizraidherence to important physical characteristicseptioblem.

1 Introduction

In the last two decades structure preserving time integgatalled energy-momentum consistent schemes,
became more and more important. The main advantage of thieggators is the preservation of the un-
derlying physical structure of the problem, which leads gmad longtime stability as well as an emersed
robustness regarding large time step sizes.

A development of energy-momentum preserving time integsafior conservative problems is already
done in Labudde & Greenspan [1,2]. These works deal with ithe tntegration of the motion of
particles, and present a time integrator which uses Taygides to define the values at the next time-
step. The numerical time integration of nonlinear struadtdiynamics is adressed in Simo et al. [3—6].
Here, the energy-momentum schemes result from specificfivatittns of the midpoint rule applied to
the Hamiltonian form of the equations of motion. An often disgpproach is the introduction of dis-
crete derivatives, which goes back to Gonzalez [7, 8] andz&er & Simo [9]. The authors describe
nonlinear elastodynamics by using a Hamiltonian formatatiHamiltonian dynamics can be regarded
as special case of the Poisson formulation of dissipativeachjcs. In Noels et al. [10], a structure-
preserving time integrator originally developed for hyglastic constitutive models is extended to finite
hypoelasticity. Energy-momentum consistent time integsafor dissipative continuum dynamics are
designed in Armero & Zambrana-Rojas [11], Grol3 & Betsch |r&] references therein. In these works,
the conservation laws of momentum and the dissipative hehiaef the time evolution equations rep-
resent the physical structure which is maintained alsoérdibcrete case. While the former work relies
on the finite differences in time, the latter is based on Galemethods in time, Eriksson et al. [13],
Cockburn [14] and Thoke [15], for instance. Th&eneralEquations foiNon-Equilibrium Reversible
IrreversibleCoupling (see Ottinger [16]) yields a Poisson formulationadfabatic thermodynamics.
This GENERIC formalism is the starting point of the struetpreserving time integrator for discrete
thermodynamics proposed recently by Romero [17].



In the present work four time integrators are compared. Ték kmown midpoint rule and the hybrid
Galerkin (hG) method are momentum preserving integrafidiese integrators are the prelimenary stage
of the thermodynamically consistent (TC) integrator arel ¢hhanced hybrid Galerkin (ehG) method,
which are energy-momentum methods. The comparison wilbpe avith regard to the temperature, the
motion, the energy, the specific functional and the balanébésth. The paper is structured as follows.
At first, we describe the physical structure of the consideéhermodynamic double pendulum. Then,
we summarise the derivation of the TC integrator presemtd®ioimero [17]. Subsequently, we derive a
new energy-momentum consistent time integrator by cagriognward the procedure described in Grol3
& Betsch [12]. Both time integrators are then compared bymaed numerical examples.

2 The thermoelastic double pendulum

We summarise the physical structure of the considered imeitsional thermoelastic double pendulum
in this section. Let gand g be the configuration vectors indicating the positions ofrtfass pointsm
andmy, respectively (see Figure 1). The vector r coincides withdtiference vector £ g, between
the two mass points.

Figure 1: Thermoelastic double pendulum

The linear momentum vectors of the mass points are denot#itebyectors pand p, defined by
P =Mmvi =mg; €

where v denote the velocity vectors of the mass points. The lineanemum vectors are associated
with the scalar products

TT=p-p (2)
i = 1,2. The length of the springs in the reference configuratiendanoted b;xg and)\g, respectively.
The current lengtiA; andA, are given by

NENCEN o=/ = ViT 3)

wherec; designate the scalar products of the direction vectorseo$fiiings. The absolute temperatures
in the springs are denoted by

08

' os
and the relative temperatur8s= 6; — 6, with respect to the reference temperatbgei = 1, 2.

(4)



In the Hamiltonian way, the total energy of the double peunrduls defined as the functional

E(T4, TR, C1,C2,81,%) = T1(Th) + T2(Te) + €1(C1, S1) + €2(C2, S2) (5)
decomposed in the kinetic energiBof the mass points and the internal energiesf the springs

1

Ti(Tl'i)ZﬂTﬁ &(c,s)=6is +Wi(c,s) (6)
Here,s and; denote the entropies and the canonical free energies optirggs, respectively. The
equations of motion for the double pendulum are then givahéy{amiltonian equations and the entropy

evolution equations
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In the Lagrangian formulation, we refer to the functional
V (T, T, C1,C,01,02) = Ti(Th) + To(TR) + é1(C1,01) + (2, 62) (8)
as relative total energy based on the relative internalggner
€(ci,8) =9is(c,6) + Oi(ci, 8) 9)

associated with the free enerdgy= (5 + (], and the corresponding entro@/~= s, + S, which can be
derived form the free energy by

o
. 10
S="% (10)
The time rate of change of the free energies reads
. 1. .
$i:§SCi—$ei (11)

whereS§ = 2‘(’3—‘£’ii characterises the stresses in the springs.

3 The TC integrator

In this section, we recall the TC integrator presented in Banfil 7], which uses the GENERIC formal-
ism (see Ottinger [16]), and enforces discrete directipnahd degeneracy conditions in analogy to the
continuous GENERIC formulation.

The GENERIC framework

The system under consideration is isolated. Looking at ithe interval I = [to, T| of interest, we
determine a function,z= z(t) : I — S belonging taC(tp, T) by solving the initial value problem

z=L(z)UE(z) + M(z) 0Sz)
Z(to) Zp

where z is the initial state vector. The matrix L and the matrix M denthe Poisson matrix and the
friction matrix, respectively. The gradientreflects the derivative with respect to the state vector

(12)

Z= [qla 02, P1, P2 S04 SZ] (13)
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The matrix L (skew-symmetric) represents the reversible @ad the matrix M (symmetric, positive
semidefinite) characterises the irreversible part. Intamdio that we have the degeneracy conditions

L(z)0S(z) = M(2) DE(z) = 0 (14)

which lead to two consequences

E(z)=0 Sz)>0 (15)

Considering the Lyapunov-functidn= E — 6, Sthe initial value problem (12) fulfils the stability esti-
mate .
L=-D%<0 (16)

whereD® indicates the non-negative total dissipation arising fthmheat transfer.

The time stepping scheme

The intervall has to be divided into subintervalg = [ty, tn;1] with the lengthd, =t 1 —t,. Each time
pointt, leads then to a state variablg Zhe TC integrator has the form

Znt1—Zn

h - L(Zn+l7 Zn) %(Zn+17 Zn) + M(Zn+l7 Zn) @5(Zn+17 Zn) (17)
n

where the discrete operatorsand 2/, and D£ and DS denote discrete gradients. Since the Egs. (14)
and (15) must also hold for the discrete counterparts, wéhgedegeneracy conditions

L(Zn, Zn+1) QS(ZW Zn+1) = M(Zna Zn+1) Q)Z(Zna Zn+1) = O (18)
and the directionality conditions

DE(Zn, Zn+1) (Zn+1— 2Zn) = E(Znt1) — E(2n)

D5(Zn, Z011) (Zns s — 70) = S(zns1) — S70) (19)

in the discrete setting. In Romero [17] is shown, that the fit€grator fulfils these conditions, such that
the total energ\e is conserved and the entro3mnever decreases. According to a theorem of Emmy
Noether additional balance laws are fulfilled if these fiord are defined by
~ L] 1%
E(z) =E(M(2)) = 5— + 5— +€(C1,S1) + &(C2, S
(0 = E(7(2)) = gy, + oy * (00,50 +2(02.%) 0
S2) =SM2)) =s1+ =
via the vector
-
M=[C1 C T T S S O-Pp G- P O G (21)

of invariants. In order to satisfy these balance laws as,whdl discrete gradients are evaluated by the
chain rule of differentiation. Eq. (17) can now be written as

Znt1 — Z ~ ~
7”+hn -, Drt(zm%)T DE(T(Zny1), TW(Zn)) + M Drr(zm%)T D3(T(Zns1), T(Zn)) (22)
with the discrete matrices anda/. These matrices are given by

08>< 8 08>< 1 08>< 1

e*
L=L ar= [0VF kg« (23)
1x8 0]
0+ —K K 9—%
with



Carefully accounting for the argume(#,,z,.1), the directionality conditions are guaranteed by parti-
tioned discrete gradients (Gonzalez [7]). Recalk;jf=c;,., ands, = s, ,, we obtain the midpoint
rule according to L'Hopital’s rule. Employing Eq. (23) inEx. (22), we get the discrete time evolution
equations

q1n+1—q1n — ip
hn my 1”*%
Bpy =%, 1 o
hn m 2"*%
P1,., — Py,
1+1h L =—2D,€10; ,+2D,er,, 1
" = 2 (25)
P2, — P2,
“T = 2@C2e2rn+%
SEI-n+1 B SEI-n

which fulfil the stability estimaté (z,.1) < L(z,) on each time step, analogously to the continuous time
evolution equations.

4 The enhanced hybrid Galerkin method

The second structure-preserving integrator is developgaro & Betsch [12] for general continuum

thermo-elastodynamics. This scheme emanates from a neawdfgbntinuous/discontinuous) Galerkin

method in time and can be regarded as extension of the petyidaveloped energy momentum (EM)

schemes of Betsch & Steinmann [18] and Grol3 et al. [19] toleolihermoelastic problems. In the case
of the thermoelastic double pendulum the underlying Lagjeandescription relies on the state vector

Z= [0y, Oy, V1, V2, B1, 03] (26)

We rewrite the equations of motion of Eq. (7), and obtain

0h=V1

%= V2 @27)
Pr=Sr—S0;

Py =—Sr

The stability estimate is derived from the Lyapunov-fuoctV/ (Ty, 0, C1,C2,01,07) defined in Eq. (8)
and leads after applying the fundamental theorem of caddalthe difference

Vit~V = — [ D <0 (28)
I

on the time intervall of interest.

The weak forms

The weak forms can be deduced from the strong forms by mighiigdn with test functions and integra-
tion over time. These test functions have to lead to a sysfesguations which fulfil among the initial
conditions also the stability estimate in Eq. (28).

At first, we derive the weak equations of motion by looking e kinetic energieg;i, i = 1,2. The
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fundamental theorem of calculus leads to the two followiognTs, after using the equations of motion

(27h-4
/ 3 vi = / 3 4

[psa—- /a - 3
1

The realisation of the non-negative DissipatDffVis only guaranteed with the test functiofisin the
weak form. This test functions must have the same polynodeigiee as the trial functid®. In the end,
a dG-Method with an energy consistent jump term is necessatyyield the form

(29)

[[;(to)]] 5, to+/359| _/ <g__1> 3  j£ie{12} (30)
i,t=to I !

These weak forms lead to a dlscontlnuous approximationeofeimperatures at tintg.

Time finite element approximation

We divide the time interval = [to, T| into m subintervalsl, = [ty, thr1) withne M =1, 2,... ,mfor the
finite element approximation in time. The time step digas given by the differencé, 1 — t, with the
linear mapping

t(a)=(1—a)ty+0thg (31)
of an unit intervally = [0,1] to the intervall, with o € I,. A piecewise continuous or discontinuous
time evolution[-](t), respectively, is then defined by the linear operators

[nta = (A=) [Jn+ 0l [nra = (1= 0) [y + a2 (32)

with their derivatives[cf]n Lo and [ Jniq With respect too. We obtain a Petrov-Galerkin approximation
with the test functiord|-|n .« = 0[] for the equations of motion. For the entropy evolution eiquat,
the test functions are the same as the trial functions, wiieans the Bubnov-Galerkin approximation
O hiq = (1—0a) 3] +ad[-]ns1. The stability estimate has now to hold on each subintefyasuch
that

Vi1 —Vo+ / DU o (33)

Iy

Therefore, the division into subintervals and the tramsftion to the time intervaly leads to the fol-
lowing approximation of the weak forms

. 1_,
op;, - Vin+% = h_népi"' (qin+1 —G,)

1 . o o
h_n(piMl_pin)'éqin—_ a—qi>%‘5qin (34)
a4 +
&~ oy sal S eJMEl
i e 80, +(8,,-5,)80] , =5 5 K . —1) 8,
- n+¢|

For a numerical exact integration of the first weak equatwn®otion, one Gaussian quadrature point
&1 = % and a weightvy = 1 (the midpoint rule) is necessary. The finite element agpration is also

applied for the second weak equations of motion. Note thatdhds to total angular momentum conser-
vation. We have to apply a two-point Gaussian quadratueefanicalculating the integrals of the entropy
evolution equation with their piecewise linear testfuoit, in contrast to the equations of motion with

1
their piecewise constant test functions. This two Gausstpaire given by, = 1_273 andé,=1-¢&;
with their corresponding weigths; = w, = % The integral on the left side is already numerically ex-
act calculated by using the midpoint rule. In contrast td,ttiee integral on the right side is generally
not integrated exactly. The hG method would then be giverhbyewvaluation of the; at the midpoint
C1y =0 . O, . andcyy =, 11,1 andeﬁ+EI =(1-&)6 +&6;,,.
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Stress approximation

The satisfaction of the angular momentum balance and thdistaestimate in the discrete setting is
done with a new stress approximation

Sl - Sl + Sl (35)
instead of the ordinary approxmatldiw1 Furthermore we use the approxrmat@p =G el , fortheg;.

The derivation of the algorithmic stresgs1 begins with the formulation of the constralnt

A . N . 1A
Gi(sl) :anJrl_qu:_anJrl _ES; (Cin+1_cin) (36)
2 2 2
Then, we minimise the functional
~ ~ 1.
'ZI(Sl’M)ZMGi(Sl)+ESZ1 (37)
2 2 2

wherey; denotes a Lagrange multiplier corresponding to the canstrahe total stress approximation
S, then reads
2

_ énﬂ - q - [Sn+1 - St} 'S;:+l
§,=2 s (38)

2 Cin+1 - Cin
In the special case @f,., = ¢j, the total stress approximation is equivalent to the orgiag@proximation

S, =9, . This total stress approximation leads to the followingge equations for the thermoelastic
double pendulum:

G100 — Gy

=V
hn 1n+%
q2n+1 B q2n _
e e (39)
P1,., — Py, = ~
“T = —Sl% Q1n+% +SZ% rn+%
P2, P2, =
ey
_éirn*éln 1 ] 1 +
5, 6. 2 (St0i2 —S3,) h K i 1-§ (eznm 1) ~0
—hy— 1) =
I dona-s)] 2aEL s I, (40)
—éern_éZH _|_l(52 — +)_ 2 1/67
6 0. | 2 201 %, h K 3 1-§ ( Inig 1) -0
—hy= 1) =
i %(ser1 —sjn)_ 241 & | 62n+£|

5 The numerical example

We consider the motion of an adiabatic thermoelastic dopbfelulum initiated by the initial positions
o° [m], the initial linear momenta$[N s] as well as the initial temperaturé8 [K], given by

1 0
= M p = M 09 = 380
2,2 0 4D
0 __ ) 0_ 0 __
qz—[o} p2—[474} 0, = 310
In the numerical examples, we choose a free enggggtroduced in Romero [17], which is given by
i = = log <>\_.°> —Bidi Iog<}\0 +k |9 —8;log o (42)
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Further, the mass points [kg], the reference length of the considered ela.‘;tomengp?«ii0 [m] and the
stiffness parametets; [J] read

m =1 mp =2 =2 AN=1 K;=K,=10000  (43)

The reference temperatube [K], the conductivity constark [W/K], the heat capacitk; [J/K] and the
coupling parametdB; [J/K] are given by

8., = 300 k=10 k = 1000 Bi=02 ic[12 (44)

The considered time interval of interestlis= [0, 50s for the quasi-stiff motion of the double pendulum.
The system is solved with the Newton-Raphson method withdleeances = 108 [J].

The reference solution (close time-mesh)

At first we take a look at the reference solutions for the stifitem, which is done with the TC algorithm.
The reference solution for the stiff system is given by a tatep sizeé\t = 0.0001s. In Figure 2 are shown
the temperature8; and6,, the length of the vector,gthe energye and the functional. The length of
the coordinate vector,qwhich reflects the length of the first spring, oscillateshie tangg1, 4]. It is
obvious that the enerdy rests on a constant level and that the Lyapunov-fundtimalways decreasing.

»
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360y

359.5
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o I

temperature
length of q

3201 ™
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time time
5 4
4X 10 i ‘ ‘ ‘ 1.2)( 10
3.5¢ 1 1.15}
3,
1.1
2.5¢ 1
L 1.05¢
2F | -
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1.5¢
1t 0.95-
O'JO 10 20 30 40 50 0'90 10 20 30 40 50
time time

Figure 2: Reference solution with the TC integrator for agtistep sizé\t = 0.0001

Coarse time-mesh

We start the comparison of the four methods with the tempe¥aB; and 6, and the length of the
coordinate vector gin the Figure 3 at a time step si2¢ = 0.015s. Comparing the midpoint rule and
the hG method with the reference solution, we can see thatethperature more oscillates as the TC



algorithm, the ehG method and the reference solution, waiehnearly the same (compare Figure 2).
Once more the length of the coordinatgexplodes after a few seconds to the multiple of its reference
length. This leads to completely wrong results for the stathagnethods.

The total energye, the Lyapunov-functiong andV are shown in Figure 4. The TC algorithm and the
ehG method lead to the same constant value for the erteag/the reference solution. The Lyapunov-
function L of the TC algorithm and the Lyapunov-functidh of the ehG method yield the decreasing
behaviour which is known of Figure 2. Both functionals amioianthe same results. This behaviour
of the energyE and the Lyapunov-functionks andV are fulfilled for the four different time step sizes
At =[0.006 Q009 Q012 QO015s. In contrast to that the midpoint rule as well as the hG ntketho
result in a blow-up for large time step sizes. The largerithe step size, the earlier the energy blows up.
This is also valid for the decreasing behaviour of the fuoral, which cannot be fulfilled for large time
step sizes by the standard methods (midpoint rule, hG mgtfde energy growth lays in the range of
100— 300%. This energy growth tends to a wrong behaviour of theougpav-functionsL andV. The
TC algorithm and the ehG method show the same results asférenee solution (compare Figure 2).

A closer look to the energi and the Lyapunov-functionls andV is given by theAE-function and the
balance of the Lyapunov-functions. These both have to idlédl for the underlying tolerance of the
Newton-Raphson iteration. The results of the hG method @mgarable with that of the midpoint rule.
As we can see in Figure 5, the midpoint rule and the hG methoahotfulfil these conditions, because
the integration is not exact. Using now the TC algorithm thecdute value of thé& E-function and the
balance of the Lyapunov-functionklis below the tolerance (see Figure 5). The ehG method does not
fulfil the conservation of the total ener@ynumerically exactly, because the method enforces theatéscr
fundamental theorem of calculus

én+l - én = én 1 (45)

2
in order to satisfy the stability estimate in Eq. (28) as agitgl structure equation which is not restricted
to adiabatic systems (see GroR3 & Betsch [12]). The TC algorienforces the discrete fundamental
theorem of calculus

an+1 - Qn - Q 1 (46)

n+5

with respect to the functiong by enforcing the degeneracy conditions in Eq. (18). Thisoissfble for
this adiabatic thermodynamic system.

6 Summary

Structure-preserving time integrators are of great isterEhe advantage of these time integrators is the
preservation of the physical structure equations of theetdyithg problem. This leads to an excellent
longtime stability as well as an emersed robustness regatdige time step sizes. In this work, we
compare two different structure-preserving time integnsfor an adiabatic thermoelastic double pen-
dulum. The first, the so-called TC algorithm, is a finite diflece scheme restricted to second-order
accuracy, which is based on a Poissonian formulation ofrtbdynamics (GENERIC framework). The
second, the ehG method, is a hybrid (continuous/disconmtisuGalerkin method in time formulated in
the Lagrangian point of view and appropriate for highereordccuracy. Both integrators possess com-
parable numerical stability and robustness, but possesiaction in the preserved physical structure.
The TC algorithm exploit the fact that the double pendulupresents an adiabatic system, and leads to
an exactly conserved total energy. The ehG method presasvpBysical structure equation a stability
estimate based on the relative total energy, which is néticks] to adiabatic systems. Numerical ex-
amples uniquely reveal that both methods exhibit the meatiadvantages of structure-preserving time
integrators.
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