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Abstract

In this work, two different structure-preserving time integrators for coupled thermomechanical problems are compared. This

comparison is done in the context of an adiabatic thermoelastic double pendulum. On the one hand a finite difference scheme is

based on a Poissonian formulation of thermodynamics (GENERIC framework), on the other hand a hybrid (continuous/discon-

tinuous) Galerkin method in time is formulated in the Lagrangian setting. The numerical example of a double pendulum shows

that both time integrators possess an excellent longtime stability as well as an emersed robustness regarding large time step

sizes. These advantageous properties are due to the algorithmic adherence to important physical characteristics of the problem.

1 Introduction

In the last two decades structure preserving time integrators, called energy-momentum consistent schemes,
became more and more important. The main advantage of these integrators is the preservation of the un-
derlying physical structure of the problem, which leads to agood longtime stability as well as an emersed
robustness regarding large time step sizes.

A development of energy-momentum preserving time integrators for conservative problems is already
done in Labudde & Greenspan [1, 2]. These works deal with the time integration of the motion of
particles, and present a time integrator which uses Taylor series to define the values at the next time-
step. The numerical time integration of nonlinear structural dynamics is adressed in Simo et al. [3–6].
Here, the energy-momentum schemes result from specific modifications of the midpoint rule applied to
the Hamiltonian form of the equations of motion. An often used approach is the introduction of dis-
crete derivatives, which goes back to Gonzalez [7, 8] and Gonzalez & Simo [9]. The authors describe
nonlinear elastodynamics by using a Hamiltonian formulation. Hamiltonian dynamics can be regarded
as special case of the Poisson formulation of dissipative dynamics. In Noels et al. [10], a structure-
preserving time integrator originally developed for hyperelastic constitutive models is extended to finite
hypoelasticity. Energy-momentum consistent time integrators for dissipative continuum dynamics are
designed in Armero & Zambrana-Rojas [11], Groß & Betsch [12]and references therein. In these works,
the conservation laws of momentum and the dissipative behaviour of the time evolution equations rep-
resent the physical structure which is maintained also in the discrete case. While the former work relies
on the finite differences in time, the latter is based on Galerkin methods in time, Eriksson et al. [13],
Cockburn [14] and Thoḿee [15], for instance. TheGeneralEquations forNon-Equilibrium Reversible
I rreversibleCoupling (see Öttinger [16]) yields a Poisson formulation ofadiabatic thermodynamics.
This GENERIC formalism is the starting point of the structure-preserving time integrator for discrete
thermodynamics proposed recently by Romero [17].
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In the present work four time integrators are compared. The well known midpoint rule and the hybrid
Galerkin (hG) method are momentum preserving integrators.These integrators are the prelimenary stage
of the thermodynamically consistent (TC) integrator and the enhanced hybrid Galerkin (ehG) method,
which are energy-momentum methods. The comparison will be done with regard to the temperature, the
motion, the energy, the specific functional and the balancesof both. The paper is structured as follows.
At first, we describe the physical structure of the considered thermodynamic double pendulum. Then,
we summarise the derivation of the TC integrator presented in Romero [17]. Subsequently, we derive a
new energy-momentum consistent time integrator by carrying forward the procedure described in Groß
& Betsch [12]. Both time integrators are then compared by means of numerical examples.

2 The thermoelastic double pendulum

We summarise the physical structure of the considered two-dimensional thermoelastic double pendulum
in this section. Let q1 and q2 be the configuration vectors indicating the positions of themass pointsm1

andm2, respectively (see Figure 1). The vector r coincides with the difference vector q2−q1 between
the two mass points.
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Figure 1: Thermoelastic double pendulum

The linear momentum vectors of the mass points are denoted bythe vectors p1 and p2, defined by

pi = mi vi = mi q̇i (1)

where vi denote the velocity vectors of the mass points. The linear momentum vectors are associated
with the scalar products

πi = pi ·pi (2)

i = 1,2. The length of the springs in the reference configuration are denoted byλ0
1 andλ0

2, respectively.
The current lengthλ1 andλ2 are given by

λ1 =
√

c1 =
√

q1 ·q1 λ2 =
√

c2 =
√

r · r (3)

whereci designate the scalar products of the direction vectors of the springs. The absolute temperatures
in the springs are denoted by

θi =
∂ei

∂si
(4)

and the relative temperaturesϑi = θi −θ∞ with respect to the reference temperatureθ∞, i = 1,2.
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In the Hamiltonian way, the total energy of the double pendulum is defined as the functional

E(π1,π2,c1,c2,s1,s2) = T1(π1)+T2(π2)+e1(c1,s1)+e2(c2,s2) (5)

decomposed in the kinetic energiesTi of the mass points and the internal energiesei of the springs

Ti(πi) =
1

2mi
πi ei(ci ,si) = θi si + ψi(ci ,si) (6)

Here,si andψi denote the entropies and the canonical free energies of the springs, respectively. The
equations of motion for the double pendulum are then given bythe Hamiltonian equations and the entropy
evolution equations

q̇1 =
p1

m1
ṗ1 = −∂(e1 +e2)

∂q1
ṡ1 = κ

(

θ2

θ1
−1

)

q̇2 =
p2

m2
ṗ2 = −∂(e1 +e2)

∂q2
ṡ2 = κ

(

θ1

θ2
−1

) (7)

In the Lagrangian formulation, we refer to the functional

V(π1,π2,c1,c2,θ1,θ2) = T1(π1)+T2(π2)+ ê1(c1,θ1)+ ê2(c2,θ2) (8)

as relative total energy based on the relative internal energy

êi(ci ,θi) = ϑi si(ci ,θi)+ ψ̂i(ci ,θi) (9)

associated with the free energyψ̂ = ψ̂a + ψ̂b and the corresponding entropyS= sa + sb, which can be
derived form the free energy by

si = −∂ψ̂i

∂θi
(10)

The time rate of change of the free energies reads

˙̂ψi =
1
2

Si ċi −si θ̇i (11)

whereSi = 2 ∂ψ̂i
∂ci

characterises the stresses in the springs.

3 The TC integrator

In this section, we recall the TC integrator presented in Romero [17], which uses the GENERIC formal-
ism (see Öttinger [16]), and enforces discrete directionality and degeneracy conditions in analogy to the
continuous GENERIC formulation.

The GENERIC framework

The system under consideration is isolated. Looking at the time interval I = [t0,T] of interest, we
determine a function zt = z(t) : I → S belonging toC1(t0,T) by solving the initial value problem

żt = L(zt)∇E(zt)+M(zt)∇S(zt)

z(t0) = z0
(12)

where z0 is the initial state vector. The matrix L and the matrix M denote the Poisson matrix and the
friction matrix, respectively. The gradient∇ reflects the derivative with respect to the state vector

z =
[

q1, q2 , p1, p2 , s1, s2
]

(13)

3



The matrix L (skew-symmetric) represents the reversible part and the matrix M (symmetric, positive
semidefinite) characterises the irreversible part. In addition to that we have the degeneracy conditions

L(zt)∇S(zt) = M(zt)∇E(zt) = 0 (14)

which lead to two consequences
Ė(zt) = 0 Ṡ(zt) ≥ 0 (15)

Considering the Lyapunov-functionL = E− θ∞ S the initial value problem (12) fulfils the stability esti-
mate

L̇ = −Dcdu≤ 0 (16)

whereDcdu indicates the non-negative total dissipation arising fromthe heat transfer.

The time stepping scheme

The intervalI has to be divided into subintervalsIn = [tn, tn+1] with the lengthshn = tn+1− tn. Each time
point tn leads then to a state variable zn. The TC integrator has the form

zn+1−zn

hn
= L(zn+1, zn)DE(zn+1, zn)+M (zn+1, zn)DS(zn+1, zn) (17)

where the discrete operatorsL andM , andDE andDS denote discrete gradients. Since the Eqs. (14)
and (15) must also hold for the discrete counterparts, we getthe degeneracy conditions

L(zn, zn+1)DS(zn, zn+1) = M (zn, zn+1)DE(zn, zn+1) = 0 (18)

and the directionality conditions

DE(zn, zn+1)(zn+1−zn) = E(zn+1)−E(zn)

DS(zn, zn+1)(zn+1−zn) = S(zn+1)−S(zn)
(19)

in the discrete setting. In Romero [17] is shown, that the TC integrator fulfils these conditions, such that
the total energyE is conserved and the entropyS never decreases. According to a theorem of Emmy
Noether additional balance laws are fulfilled if these functions are defined by

E(z) = Ẽ(π(z)) =
π1

2m1
+

π2

2m2
+ea(c1,s1)+e2(c2,s2)

S(z) = S̃(π(z)) = s1 +s2

(20)

via the vector
π =

[

c1 c2 π1 π2 s1 s2 q1 · p1 q2 · p2 q1 · q2

]T
(21)

of invariants. In order to satisfy these balance laws as well, the discrete gradients are evaluated by the
chain rule of differentiation. Eq. (17) can now be written as

zn+1−zn

hn
= L ∇π(zn+ 1

2
)T
DẼ(π(zn+1), π(zn))+M ∇π(zn+ 1

2
)T
DS̃(π(zn+1), π(zn)) (22)

with the discrete matricesL andM . These matrices are given by

L = L M =







08×8 08×1 08×1

01×8 κ θ⋆

2
θ⋆

1
−κ

01×8 −κ κ θ⋆

1
θ⋆

2






(23)

with
θ⋆

1 = Ds1e1 θ⋆

2 = Ds2e2 (24)
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Carefully accounting for the argument(zn,zn+1), the directionality conditions are guaranteed by parti-
tioned discrete gradients (Gonzalez [7]). Recall, ifcin = cin+1 andsin = sin+1, we obtain the midpoint
rule according to L’Hopital’s rule. Employing Eq. (23) intoEq. (22), we get the discrete time evolution
equations

q1n+1
−q1n

hn
=

1
m1

p1
n+ 1

2

q2n+1
−q2n

hn
=

1
m2

p2
n+ 1

2

p1n+1
−p1n

hn
= −2Dc1e1 q1

n+ 1
2

+2Dc2e2 rn+ 1
2

p2n+1
−p2n

hn
= −2Dc2e2 rn+ 1

2

s1n+1 −s1n

hn
= κ

(

θ⋆

2

θ⋆

1
−1

)

s2n+1 −s2n

hn
= κ

(

θ⋆

1

θ⋆

2
−1

)

(25)

which fulfil the stability estimateL(zn+1) ≤ L(zn) on each time step, analogously to the continuous time
evolution equations.

4 The enhanced hybrid Galerkin method

The second structure-preserving integrator is developed in Groß & Betsch [12] for general continuum
thermo-elastodynamics. This scheme emanates from a new hybrid (continuous/discontinuous) Galerkin
method in time and can be regarded as extension of the previously developed energy momentum (EM)
schemes of Betsch & Steinmann [18] and Groß et al. [19] to coupled thermoelastic problems. In the case
of the thermoelastic double pendulum the underlying Lagrangian description relies on the state vector

z =
[

q1, q2 , v1, v2 , θ1, θ2
]

(26)

We rewrite the equations of motion of Eq. (7), and obtain

q̇1 = v1

q̇2 = v2

ṗ1 = S2 r−S1q1

ṗ2 = −S2 r

(27)

The stability estimate is derived from the Lyapunov-function V(π1,π2,c1,c2,θ1,θ2) defined in Eq. (8)
and leads after applying the fundamental theorem of calculus to the difference

Vt=T −Vt=t0 = −
Z

I

Dcdu≤ 0 (28)

on the time intervalI of interest.

The weak forms

The weak forms can be deduced from the strong forms by multiplication with test functions and integra-
tion over time. These test functions have to lead to a system of equations which fulfil among the initial
conditions also the stability estimate in Eq. (28).

At first, we derive the weak equations of motion by looking at the kinetic energiesTi , i = 1,2. The
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fundamental theorem of calculus leads to the two following forms, after using the equations of motion
(27)1−4

Z

I

δṗi · vi =
Z

I

δṗi · q̇i

Z

I

ṗi · δq̇i = −
Z

I

∂ψ̂
∂qi

· δq̇i

(29)

The realisation of the non-negative DissipationDcdu is only guaranteed with the test functionsϑi in the
weak form. This test functions must have the same polynomialdegree as the trial functionθi . In the end,
a dG-Method with an energy consistent jump term is necessaryand yield the form

[[êi(t0)]]

ϑ+
i,t=t0

δθ+
i,t=t0 +

Z

I

ṡi δθi =
Z

I

κ
(

θ j

θi
−1

)

δθi j 6= i ∈ {1,2} (30)

These weak forms lead to a discontinuous approximation of the temperatures at timet0.

Time finite element approximation

We divide the time intervalI = [t0,T] into msubintervalsIn = [tn, tn+1] with n∈ M = 1, 2, . . . ,m for the
finite element approximation in time. The time step sizehn is given by the differencetn+1− tn with the
linear mapping

t(α) = (1−α) tn + α tn+1 (31)

of an unit intervalIα = [0,1] to the intervalIn with α ∈ Iα. A piecewise continuous or discontinuous
time evolution[·](t), respectively, is then defined by the linear operators

[·]n+α = (1−α) [·]n + α [·]n+1 [·]+n+α = (1−α) [·]+n + α [·]n+1 (32)

with their derivatives˚[·]n+α and ˚[·]+n+α with respect toα. We obtain a Petrov-Galerkin approximation
with the test functionδ[·]n+α = δ[·]n for the equations of motion. For the entropy evolution equations,
the test functions are the same as the trial functions, whichmeans the Bubnov-Galerkin approximation
δ[·]+n+α = (1−α)δ[·]+n + αδ[·]n+1. The stability estimate has now to hold on each subintervalIn, such
that

Vn+1−Vn +hn

Z

Iα

Dcdu = 0 (33)

Therefore, the division into subintervals and the transformation to the time intervalIα leads to the fol-
lowing approximation of the weak forms

δp̊in · vi
n+ 1

2
=

1
hn

δp̊in · (qin+1
−qin)

1
hn

(pin+1
−pin) · δq̊in = −

(

∂ψ̂
∂qi

)

1
2

· δq̊in

ê+
in − êin

θ+
in −θ∞

δθ+
in +(sin+1 −s+

in)δθ+
i
n+ 1

2

=
hn

2

2

∑
l=1

κ

(

θ+
jn+ξl

θ+
in+ξl

−1

)

δθ+
in+ξl

(34)

For a numerical exact integration of the first weak equationsof motion, one Gaussian quadrature point
ξ1 = 1

2 and a weightw1 = 1 (the midpoint rule) is necessary. The finite element approximation is also
applied for the second weak equations of motion. Note that this leads to total angular momentum conser-
vation. We have to apply a two-point Gaussian quadrature rule for calculating the integrals of the entropy
evolution equation with their piecewise linear testfunctions, in contrast to the equations of motion with

their piecewise constant test functions. This two Gauss points are given byξ1 =
1− 1√

3
2 andξ2 = 1− ξ1

with their corresponding weigthsw1 = w2 = 1
2. The integral on the left side is already numerically ex-

act calculated by using the midpoint rule. In contrast to that, the integral on the right side is generally
not integrated exactly. The hG method would then be given by the evaluation of theci at the midpoint
c11

2
= q1

n+ 1
2

q1
n+ 1

2

andc21
2
= rn+ 1

2
rn+ 1

2
andθ+

in+ξl
= (1−ξl )θ+

in + ξl θin+1.
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Stress approximation

The satisfaction of the angular momentum balance and the stability estimate in the discrete setting is
done with a new stress approximation

S̄i 1
2

= Si 1
2
+ Ŝi 1

2
(35)

instead of the ordinary approximationSi 1
2
. Furthermore, we use the approximation ¯ci 1

2
= ci

n+ 1
2

for theci .

The derivation of the algorithmic stressŜi 1
2

begins with the formulation of the constraint

Gi(Ŝi 1
2
) = êin+1 − ê+

in − ˙̂ei
n+ 1

2
− 1

2
Ŝi 1

2
(cin+1 −cin) (36)

Then, we minimise the functional

Fi(Ŝi 1
2
, µi) = µi Gi(Ŝi 1

2
)+

1
2

Ŝ2
i 1

2

(37)

whereµi denotes a Lagrange multiplier corresponding to the constraint. The total stress approximation
S̄i 1

2
then reads

S̄i 1
2

= 2
êin+1 − ê+

in −
[

sin+1 −s+
in

]

ϑ+
i
n+ 1

2

cin+1 −cin
(38)

In the special case ofcin+1 = cin the total stress approximation is equivalent to the ordinary approximation
S̄i 1

2
= Si 1

2
. This total stress approximation leads to the following discrete equations for the thermoelastic

double pendulum:
q1n+1

−q1n

hn
= v1

n+ 1
2

q2n+1
−q2n

hn
= v2

n+ 1
2

p1n+1
−p1n

hn
= −S̄11

2
q1

n+ 1
2

+ S̄21
2

rn+ 1
2

p2n+1
−p2n

hn
= −S̄21

2
rn+ 1

2

(39)





ê+
1n
−ê1n

θ+
1n
−θ∞

+ 1
2 (s1n+1 −s+

1n
)

1
2 (s1n+1 −s+

1n
)



−hn
κ
2

2

∑
l=1

[

1−ξl

ξl

]

(

θ+
2n+ξl

θ+
1n+ξl

−1

)

= 0





ê+
2n
−ê2n

θ+
2n
−θ∞

+ 1
2 (s2n+1 −s+

2n
)

1
2 (s2n+1 −s+

2n
)



−hn
κ
2

2

∑
l=1

[

1−ξl

ξl

]

(

θ+
1n+ξl

θ+
2n+ξl

−1

)

= 0

(40)

5 The numerical example

We consider the motion of an adiabatic thermoelastic doublependulum initiated by the initial positions
q0

i [m], the initial linear momenta p0i [N s] as well as the initial temperaturesθ0
i [K], given by

q0
1 =

[

1
0

]

p0
1 =

[

0
1

]

θ0
1 = 380

q0
2 =

[

2,2
0

]

p0
2 =

[

0
4,4

]

θ0
2 = 310

(41)

In the numerical examples, we choose a free energyψ̂i introduced in Romero [17], which is given by

ψ̂i =
Ki

2
log2

(

λi

λ0
i

)

−βi ϑi log

(

λi

λ0
i

)

+ki

[

ϑi −θi log

(

θi

θ∞

)]

(42)
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Further, the mass pointsmi [kg], the reference length of the considered elastomer springsλ0
i [m] and the

stiffness parametersKi [J] read

m1 = 1 m2 = 2 λ0
1 = 2 λ0

2 = 1 K1 = K2 = 10000 (43)

The reference temperatureθ∞ [K], the conductivity constantκ [W/K], the heat capacityki [J/K] and the
coupling parameterβi [J/K] are given by

θ∞ = 300 κ = 10 ki = 1000 βi = 0,2 i ∈ [1,2] (44)

The considered time interval of interest isI = [0, 50]s for the quasi-stiff motion of the double pendulum.
The system is solved with the Newton-Raphson method with thetoleranceε = 10−8 [J].

The reference solution (close time-mesh)

At first we take a look at the reference solutions for the stiffsystem, which is done with the TC algorithm.
The reference solution for the stiff system is given by a timestep size∆t = 0.0001s. In Figure 2 are shown
the temperaturesθ1 andθ2, the length of the vector q1, the energyE and the functionalL. The length of
the coordinate vector q1, which reflects the length of the first spring, oscillates in the range[1, 4]. It is
obvious that the energyE rests on a constant level and that the Lyapunov-functionL is always decreasing.
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Figure 2: Reference solution with the TC integrator for a time step size∆t = 0.0001

Coarse time-mesh

We start the comparison of the four methods with the temperatures θ1 and θ2 and the length of the
coordinate vector q1 in the Figure 3 at a time step size∆t = 0.015s. Comparing the midpoint rule and
the hG method with the reference solution, we can see that thetemperature more oscillates as the TC
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algorithm, the ehG method and the reference solution, whichare nearly the same (compare Figure 2).
Once more the length of the coordinate q1 explodes after a few seconds to the multiple of its reference
length. This leads to completely wrong results for the standard methods.

The total energyE, the Lyapunov-functionsL andV are shown in Figure 4. The TC algorithm and the
ehG method lead to the same constant value for the energyE as the reference solution. The Lyapunov-
function L of the TC algorithm and the Lyapunov-functionV of the ehG method yield the decreasing
behaviour which is known of Figure 2. Both functionals amount to the same results. This behaviour
of the energyE and the Lyapunov-functionsL andV are fulfilled for the four different time step sizes
∆t = [0.006 0.009 0.012 0.015]s. In contrast to that the midpoint rule as well as the hG method
result in a blow-up for large time step sizes. The larger the time step size, the earlier the energy blows up.
This is also valid for the decreasing behaviour of the functional, which cannot be fulfilled for large time
step sizes by the standard methods (midpoint rule, hG method). The energy growth lays in the range of
100−300%. This energy growth tends to a wrong behaviour of the Lyapunov-functionsL andV. The
TC algorithm and the ehG method show the same results as the reference solution (compare Figure 2).

A closer look to the energyE and the Lyapunov-functionsL andV is given by the∆E-function and the
balance of the Lyapunov-functions. These both have to be fulfilled for the underlying toleranceε of the
Newton-Raphson iteration. The results of the hG method are comparable with that of the midpoint rule.
As we can see in Figure 5, the midpoint rule and the hG method can not fulfil these conditions, because
the integration is not exact. Using now the TC algorithm the absolute value of the∆E-function and the
balance of the Lyapunov-functionalL is below the toleranceε (see Figure 5). The ehG method does not
fulfil the conservation of the total energyE numerically exactly, because the method enforces the discrete
fundamental theorem of calculus

êin+1 − êin = ˙̂ei
n+ 1

2
(45)

in order to satisfy the stability estimate in Eq. (28) as a physical structure equation which is not restricted
to adiabatic systems (see Groß & Betsch [12]). The TC algorithm enforces the discrete fundamental
theorem of calculus

ein+1 −ein = ėi
n+ 1

2
(46)

with respect to the functionsei by enforcing the degeneracy conditions in Eq. (18). This is possible for
this adiabatic thermodynamic system.

6 Summary

Structure-preserving time integrators are of great interest. The advantage of these time integrators is the
preservation of the physical structure equations of the underlying problem. This leads to an excellent
longtime stability as well as an emersed robustness regarding large time step sizes. In this work, we
compare two different structure-preserving time integrators for an adiabatic thermoelastic double pen-
dulum. The first, the so-called TC algorithm, is a finite difference scheme restricted to second-order
accuracy, which is based on a Poissonian formulation of thermodynamics (GENERIC framework). The
second, the ehG method, is a hybrid (continuous/discontinuous) Galerkin method in time formulated in
the Lagrangian point of view and appropriate for higher-order accuracy. Both integrators possess com-
parable numerical stability and robustness, but possess a distinction in the preserved physical structure.
The TC algorithm exploit the fact that the double pendulum represents an adiabatic system, and leads to
an exactly conserved total energy. The ehG method preservesas physical structure equation a stability
estimate based on the relative total energy, which is not restricted to adiabatic systems. Numerical ex-
amples uniquely reveal that both methods exhibit the mentioned advantages of structure-preserving time
integrators.
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