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Abstract. The main goal of the present work is the description of a dyodimite deforma-
tion thermo-viscoelastic continuum in the enhanced GENEeneral equations for non-
equilibrium reversible irreversible coupling) format. @&iefore the time integration is done
with partitioned discrete derivatives for the thermodymzatly consistent system. The system
of partial differential equations is described in an enhament of the so called GENERIC for-
mat. This GENERIC format was introduced for thermo-elagtaghic systems. The considered
variables of the system are the Poissonian variables, whiielthe linear momentum, the con-
figuration, the entropy and the internal variable.

There are two constitutive equations for the thermo-vikasigE continuum necessary. The
thermal evolution equation is described with Fourier’s lafvsotropic heat conduction and the
viscous part is given by the fourth order compliance tensor.

The enhanced numerical stability of the newly developeatiire-preserving integrators in
comparison to standard integrators is demonstrated by mefinumerical examples.
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1 INTRODUCTION

Structure preserving time integrators are meanwhile wdiwn as time integrators, which
lead to enhanced robustness and longtime stability. Amafsed time approach is the discrete
derivative of Gonzalez [1]. Furthermore, the Hamiltoniamfiulation leads for elastodynamics
to an energy-momentum scheme (see Gonzalez{®fjnger [9] introduced for thermodynam-
ics a GENERIC (General Equations for Non-Equilibrium Reilae Irreversible Coupling) for-
mat which includes a dissipative term. The state variabieste Poissonian variables (config-
uration, linear momenta and entropy). This framework iggifor closed systems. In Romero
[11,/12,/13] the GENERIC format is applied with partitionedatete gradients (see Gonzalez
[1]) for a thermoelastic double pendulum and a thermoeasmtinuum. This time integrator
is called the TC (Thermodynamically Consistent) integratal preserves the underlying struc-
tural properties. In Kruger et dll[5] a comparison of the in€grator and two other structure
preserving time integrators is presented.

In the present work, the GENERIC framework and the TC integraill be enhanced to
thermoviscoelastic systems. For a double pendulum, thereald GENERIC format and the
enhanced TC algorithm is considered in Kriiger et al.[6]

2 THERMOVISCOELASTIC CONTINUUM

The motion of a continuun® with a particleP and the boundarg5 over a timet is de-
scribed with two configurations (see Figlile 1). Here, thersfce configuratiof, is given

- o / o)
oB

Figure 1: Configurations of a continuum

0B,

at timet = 0 and the current configuratioi; is defined at a time¢ > 0. 0B, andJB; are
the corresponding boundaries. The partiEleés transformed with the nonlinear mappings
and ¢, to the reference configuratidsy and the current configuratiof, (see Holzapfel [4]),
respectively:

X = ¢(Pt) x = ¢,(P1) 1)
X andx denote the position vectors of the poitisandz, respectively. The nonlinear mapping
¢ maps the position vectd to the current configuratior by:

x = (X, 1) (2)
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The displacement field is defined by the difference of the position vectors:
u(X,t) =x(X,t) — X (3)

The velocity and acceleration field can be derived by thedimstsecond partial time derivative
of the mappingp:

2
v(X,t) = w = a(X,t) = % =@ 4)

These derivatives can also be written= x anda = x. Hence, a dot denotes a partial time
derivative at a fixed position vectdX. The deformation of the continuum is given by the
deformation gradient

_ 0p(X,t)

- 9X
With the definition of the Jacobian determinaht= det # > 0, the volume element of the
reference configuration \¢an be related to the current volume=v JV. The deformation
gradient leads to the strain of continuum, which is denotgthle right Cauchy-Green strain
tensor

= Grad p(X, t) (5)

c=9%"7% (6)
In order to describe thermal behavior, the entropy is chasestate variable:

s = s(X,t) (7)

This variable was also selected in the works of Romerol([1P, TBe underlying constitutive
law of the internal energy yields the temperature
_ Oe
~ Os

The viscous (history dependend) material behavior is desgtiby an isotropic internal vari-
able (see Reese et al. [10] & Gral [3]):

0 (8)

G=7F 7 9)

Figure 2: Intermediate configuration of the continuum
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7. describes the elastic deformation gradient. The intera@blec; is symmetric and char-
acterizes the internal structure of the continuum withversible (dissipative) effects. Note that
the internal deformation gradiemt is given on the intermediate configurati® (see Figure
[2), which is a transformation of two inelastic states. InIN®) 8] the material isomorphism
is introduced, which establishes a connection between favbcfes. The isotropic material
behavior leads to the elastic strain measure

G.=cc! (10)
3 PHYSICAL STRUCTURE

The total energyH of the continuum is given by the total kinetic energyand the total
internal energy:
H=T(p)+E(C,s,G) (11)

The total kinetic energ¥y” and the total internal energy are the integrals over the domain of
the kinetic energid” and the internal energy

1) = [7® B(csa)= [e(cs.0) (12)
Bo BO
Furthermore, the total kinetic ener@yis given in terms of the linear momenga= p, v and

the constant density, by:

1
T(P):/Q—pOP'P (13)
Bo

The total entropy of the systefis defined by the local entropyfunctions:

5:/5 (14)

Bo

As stability criterion, the Lyapunov functioh is introduced:
L=H-0,5 (15)
The temperatuf, is the reference temperature.

4 STRONG EVOLUTION EQUATIONS

The strong evolution equations are the two equations ofanptvhich are well known from
elastodynamics, the thermal evolution equation and theuss evolution equation:

) 1

P=—P
Po

p = Dive

(16)
: 1 : int
S:_E [DIVQ—D }
G=2GV1. xvs
The first Piola-Kirchhoff stress tens@rdepends on the second Piola-Kirchhoff stress temsor

Oe

P = :2—
FS S ac

(17)
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As constitutive equation for the first Piola-Kirchhoff héltx Q the Fouriers law of heat con-
duction is used with the assumption of isotropy:

Q=—% Grad6 (18)
The isotropic heat conduction tensgris defined by
K=rJC (19)

wherex > 0 denotes the heat conduction parameter and the Jacobiamdetat.] = v/det C
is evaluated with the right Cauchy-Green strain tensofhe viscous evolution equation leads
to the viscous Mandel stress’*s, which depends on the inelastic stress terdsor

4 Oe
e =2¢T I'=— 20
G oc (20)
This inelastic stres§’ can be recovered in the internal dissipation
D™ =1_":¢ (22)
The fourth order compliance tens®r! is split into a deviatoric and volumetric part:
1 T 1
Vfl — ]Idev I[vol 22
2 Vdev + Vvol Nim ( )
with
I[devT — HT o I[vol
I[vol — I ® I (23)
Ndim
M= 1®1

The deviatoric and volumetric parametéf’ and Vv as well as the dimensiomy;,, define
this compliance tensor with the restrictions

9 Vdev

Ndim

Vi >0 Ve > (24)

5 ENHANCED GENERIC

The GENERIC format was introduced Bttinger [9]. This format is given for thermal and
mechanical isolated systems. For the thermoviscoelastitraium, the GENERIC system will
be enhanced. The initial value problem is stated by

z = |L(z) + L"(z)| 0H(z) + [M(z) + M"*(z)] 65(z)

z(t =0) = 2° (25)

The state vectar ¢ R'? is defined by the mapping, the linear momentga, the entropy and
the internal variable in Voigt notatiog:

@
Z = 1;) (26)
G

wn

5
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The matriced. andM denote the skew-symmetric Poisson matrix and the symnpaisitive-
semidefinite friction matrix, respectively. The viscouslenion equation leads to the enhanced
symmetric matrice&.”* andM"**. These matrices are as follows:

03><3 I3><3 03><7 _
O7><7 07><6
L= |_3x3 (3x3 3x7 LYis —

07 —4ViGeG+VaG®dal,,

07><3 07><3 O7><7 -

- - _ - 27)
06><6 06><1 06><6 06><6 06><1 06><6
1 ; 1 .
M = 01><6 —Z Di 01><6 MY = 01><6 _ Dint 01><6
7 ivQ 7
06><6 06><1 06><6 06><6 06><1 06><6
Here, the parametés; andV; are shorthand notations for the expressions
1 1 1
Vi = Vo = — (28)
! 2 ‘/dev ? ‘/vol niim 2 Vdev Ndim

The functional derivatives of the total ener@if and total entropy S with respect to the state
vectorz are

—Dive 0B3x1)
OH = | Po 0S = = const. (29)
4 1
- [F]vn 0(6X1)

The related degeneracy conditions for the enhanced GENERiNat are similar to the degen-
eracy conditions of the GENERIC format, which means:

/6H~M55:0 /5S~[L+L”5] §H =0 (30)

Bo BO

Furthermore, the following enhanced degeneracy condisioecessary:

/ SH - M5 68 = — / 0H - LV §H (31)
B() BO
5.1 Structural properties

The enhanced GENERIC format is linked to certain structomaperties, which are fullfilled
neglegting external forces. The first special property ésttital energy consistency:

H:/&H-z (32)

Bo
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Including the skew-symmetry df and the degeneracy condition of Eq. |(3Ghe rate of the
total energy yields

H:i/éﬂﬁL”ﬂHJ+5HWNP“55
Bo
=0
due to the enhanced degeneracy condition Eg. (31). Anatbgdbe rate of the total entropy
S is given as follows:
S:/ﬁs¢

Bo
:/ﬁs[M+hﬂﬂ55
Bo

Here, the degeneracy condition of EQ.](3®)inserted. The evaluation of the Matricef and
MY, as well as the vectarS leads to

(33)

(34)

- 1 1 1 .
S:/—{/{JQP’ Grad=- ¢! Grad= + D™| >0

0 0 0
B
" et (35)
_ / g
Bo
Generally, the rate of the Lyapunov functibhimplies a stable equilibrium state, iff
V<0 (36)
Here, the rate of the Lyapunov function is once more given by:
V=H-0.5 (37)

Inserting the two properties of Eqs. {33nd [35), the stable equilibrium state is guaranteed
by:

X Dtot
V:—Hoo/ 7 <0 (38)
Bo
5.2 Weak evolution equations

The weak evolution equations of the enhanced GENERIC focarabe derived by the total
energy balance of Eq.(B2). The functional dervative of thtaltenergyd H yields the test
functionsw.. The first and second entry will be replaced by the strongutisi equations:

WQO —p
_ Wp _ »
[wci ] vn - [F] vn
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The four weak equations of the enhanced GENERIC are

1 . 4
/Wz.zz/ww.%p—l—/wp-Diva—/% [DlVQ—Dmt]
B

+/wci:2CiV_1:Fm
Bo

(40)

6 DISCRETIZATION IN TIME

The weak evolution equations are now discretized in timé wie enhanced TC (Thermo-
dynamically consistent) integrator. The TC integratortf@rmoelastic systems was introduced
by Romero([11] for a thermoelastic double pendulum. Thisgrator is now enhanced for the
thermoviscoelastic continuum.

The time intervall = [0, T] is split into finite time elements of the number= [1, ... n,)
with the time interval&,, = [t,,,t,.1]. The time step size is denoted by = ¢,,,; — t,,. The
enhanced TC integrator is based upon the G-equivariantifunat derivative of Gonzalez [1].
The time discrete weak evolution equations are given by

HnJrl - Hn / Zpy1 — Zp
- = WZ - _

I, h,
N (41)
_ / w. - ([L+17] ACH 4 M+ 1] A%S)
Bo
where
_03><3 I3><3 03><7
L= _13><3 03><3 03><7 Lvis _ 07X7 07X6
’ 6x7 s : : '
07<3  07%3 77 0 4 C‘ZM%@C’H% + V2 CZH% ® CZH%]W
_06><6 106><1 06%6 06x6  gbx1  (6x6
M= |00 —— DivQ: 0*¢ _Mis — | 1x6 lDz‘lnt 01%6
01 ? 0 =2
06><6 206><1 06><6 06><6 06><1 06><6
_ (42)

The specific evaluation of the internal variabt(?;s+1 , the temperature%%, the heat flux vector
. nra

Q% and the internal DissipatioR’™ is done in the following way:
2

1 _
Onss = 3 [On+ O] Q= et Gy €y Gradfy
0, = D,e D =2¢  Ii:V':2¢ T
5 2 n+s 2 nTy

Here, the partitioned discrete gradient operatpj is used (see Gonzalez [1]) for the derivative
of the internal energy with respect to the entropy The G-equivariant functional derivatives
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of the total energy and entropy are given by

__Div <j7n+% _S%>- 0Bx1)
D T2 ol O(3><1)
ACH = | IPIPY =P ACS = (44)
9% Dgs
- [Fl} (6%
L 2 lun3 -

The second Piola-Kirchhoff stress tens%)rand the inelastic stress tenslt’%r are also evaluated
with partitioned discrete gradients:

5 — 2Dc‘€ F% — —Dcie (45)

1
2

7 DISCRETIZATION IN SPACE

The spatial discretization of the weak evolution equatienperformed with the Finite-
Element-Method. Therefore, the continuum baflyis approximated withn, elements of
0. C B

BrB"= ] (46)
e=1

The discrete boundar§B” is analogously given byB" = [JI<, Q.. The isoparametric
concept leads to ansatz functions, which are used for thengiep as well as for the field
variables. These ansatz functiabis (¢) are defined on a reference elem@ntwith normalized
coordinateg. This leads to the following approximated test and trialctions:

Na f Na f
X =) NAX wo =) N'w¢!
A=1 A=1
Na f Na f
XQZE :NAXeA WZZE :NAWZA
A=1 A=1
s s 47
e A __eA e A eA
p° = E N°p ws = N wg
A=1 A=1
Ng g
s = E NA SeA
A=1

The viscous test and trial functions are evaluated on theaiélevel. Hence, itis not necessary
to approximate these functions in space. We denote theusstién by ¢, and the internal
variable bycs. The deformation gradient® is approximated as follows:

Fe=j° g (48)
The gradientg® andj¢ are defined as
oxX* ox®
e _ e 49
T = (49)

The ordinary finite element approximation of the testfumctv¢ in Eq. (47) pose a problem.
An admissible testfunction is the temperatéfe but this testfunction is not approximated in

9
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Eqg. (47) and is not consistent with Eq._[(32). Therefore, agotmn of the testfunctiod”™
leading to stability (see Romero [12]) with the node veorst = we:

Ngf
o =3 Nt (50)

A=1

based on an additional time discrete equation:

/W@p oF = /W@p 0% (51)

Bo BO

is necessary. The testfunction of this equation can be appated like the other testfunctions
and is given by:
Sntl — Sn
Wop = —HT (52)

8 DISCRETE EVOLUTION EQUATIONS

The discrete weak evolution equations are now given for th@eced GENERIC system.
The global system includes the equations of motion, thenthkevolution equation and the
projection:

ne Maf ne Naf
U Z weA HAB — U Z weA ]\4141 anr,
e=1A,B=1 e=1A,B=1
ne Maf ne Maf
U Z eA  prAB Entl = Pn pn+1 pn U Z weA . (FelxteA _ FilnteA)
e=1A,B=1 e=1A=1 ? ?
Na f e ne Naf (53)
U Z eA HAB n+1 Sn U ZWeA (Te:vt°A Tznt°A>
e=1A,B=1 e=1A=1
ne TMaf ne Maf
U > witm e =) /NA 6% det 7°
e=1A,B=1 e=1 A=1

The local system is given by the viscous evolution equation:
U/WC'M— /WC 26 V_ 2¢ %Fg (54)

. o 4eA eA .
The internal forceF """ and external forceB5*" are given below:
2

Ngf
Pt = / F¢.1 @ Grad N : 5§ det 5° F?t“ =Y nmM” T (55)

2
Qo B=1

The vectofT$? is the node vector of the first Piola-Kirchhoff stress ve@or= S NA T,
2 2 2
Analogously, the thermal evolution equation exhibitsing and external parts with the exter-

10
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nal heat quxQe =" NA QW

or° o

- Grad N4 NA . ONA
it — / H ra ; Grad¢” | - &; Grad 0" — G DI | det 5°

Qg
Paf (56)

et 3 / o NANT det 5 QF

B=150

The scalarsi4?, MA_EE and HAP denote the boundary and volume integrals over the ansatz
functions with the determlnant over the boundaress; = ||X?, x X [|:

1
= / NANFdets® M5 =—H"Y  HY = / NANPB det g° (57)
0
Po oo
9 NUMERICAL EXAMPLES

The internal energy is of Simo-Pister type and can be split into a compressiblés@us
and a thermal part:

e(C, s, G) = V" (C) + (¢, G) + e(C, ) (58)
with
P = 3 (tr C — Naim — 2 In) + % (J)
97 = B2 (60 6= man — 2 In ) + 977 () (59)
e =K [0(C,5) — Ooo] + Ooo Naimn 3 ¢v0;( )

1 and \ are the Lamé@ parameters,, and )\, are the viscous Lagparametersk is the heat
coefficient and3 is the coupling parameter. The volumetric free eneftfy(.J.)) is given by:

W (Jey) = % [In* Jey + (Jey —1)7] (60)

The parameters for the following examples are given below:

A = 3000 1= 750 po = 8.93
Ae = 3000 fte = T50 View = 100 Voot = 500 (61)
k=2 k = 150 0. = 300 3 = 0.0001

The continuum body is a disk (see Figlie 3). This disk haseeriradius, = 0.8 and an outer
radiusr, = 2.0. The thickness of the disk is= 0.4. The initial temperature is logarithmic
distributed from the temperature at the outer ring&i K to a temperature at the inner ring of
310 K.

For the first example we prescribe mechanical Dirichlet ldauies for the inner ring, which
means a fixed position, and an initial angular velocity = 60 elsewhere (see Figufe 4).
In the second example we state mechanical Neumann-Boesdgisien by the traction vec-

tor Th = S5 NBtP sin (2” t, 1> with t? = [0 100 0]", see Figurél5 and in the

11
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Figure 3: Continuum disk and the initial temperature contou

third example we prescribe thermal Neumann-boundaridstivé boundary heat qu@Z+l =

S NB 1000 sin (%’T tn+%), see Figurélé. These boundary conditions are applied for

After that the traction vector and the heat flux vanish andststem is totally closed. The time
step size i\t = 0.02 s.

4
0 3.5 <10
O~
~ 34
33 10 20 30
time
3
105 ‘ ‘ 3.1 210
3.0
104 | 9.
104 29
2.8
103 0 20 30 > 0 20 30
time time

Figure 4: Example with Dirichlet boundaries and initial afay velocity, total energyd, total entropysS and
Lyapunov function//

In Figure[4 the structural properties of the enhanced GENE®Ristem are shown for the
first example. Here, external forces are neglected, thimmm#aat the disk is thermally and
mechanically closed. The temperature balances to one tammpe for the whole continuum.
The total energy is conserved for the total simulation time & s. The total entropy is
increasing and the Lyapunov functidhis decreasing, which indicates a stable system.

Figure[5 shows the result for the disk with Neumann boundamated with the traction

12
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4
a5 x10
= 34
&30 5 10
time
3
104 4.0 10
3.5 |
95)
= 3.0
103 5 0 %% 5 10
time time

Figure 5: Example with Neumann boundaries for the tractegtar, total energy/, total entropyS and Lyapunov
functionV

vectorTZle. This Neumann boundaries affect the total eneifyyas well as the total entropy

S and the 2Lyapunov functior. After 8 s the loads are removed and the structural properties
of the enhanced GENERIC format are visible.

W7 @ g7 X104

3.6
m 35 [
3.4
33 5 10
time
| x 103
110 | 3.4
O)108 — 3.2 1
106 | >~ 30"
104 | | 2.8 | ‘
0 5 10 0 5 10
time time

Figure 6: Example with Neumann boundaries for the heat flotal energyH, total entropyS and Lyapunov
functionV'

The third example is the disk with Neumann boundaries réladehe boundary heat flux
QZ#. The results are shown in Figuré 6. Once again these bowsdaffiect the structural

proerrties d, S andV). After the8 s of loads, the total energhf is conserved, the total

13
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entropy.sS increases and the Lyapunov functisrndecreases.

10 CONCLUSIONS

Structure preserving time integrators have become morenam@ important in the last
decades. The preservation of the structural propertieseofihderlying system leads to long-
time stability and computational robustness. In this wark have newly proposed the enhanced
GENERIC framework in connection with an enhanced TC inteegrfar thermoviscoelastic sys-
tems. This framework is based upon the Poissonian fornomati thermodynamics, which uses
the configuration, the linear momenta, the entropy and tteznal variables as state variables.
The numerical examples show that the structural propeatiereserved for closed systems.
This means a constant total energy, an increasing totalgnénd a decreasing Lyapunov func-
tion.
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