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Abstract. The main goal of the present work is the description of a dynamic finite deforma-
tion thermo-viscoelastic continuum in the enhanced GENERIC (General equations for non-
equilibrium reversible irreversible coupling) format. Therefore the time integration is done
with partitioned discrete derivatives for the thermodynamically consistent system. The system
of partial differential equations is described in an enhancement of the so called GENERIC for-
mat. This GENERIC format was introduced for thermo-elastodynamic systems. The considered
variables of the system are the Poissonian variables, whichare the linear momentum, the con-
figuration, the entropy and the internal variable.

There are two constitutive equations for the thermo-viscoelastic continuum necessary. The
thermal evolution equation is described with Fourier’s lawof isotropic heat conduction and the
viscous part is given by the fourth order compliance tensor.

The enhanced numerical stability of the newly developed structure-preserving integrators in
comparison to standard integrators is demonstrated by means of numerical examples.
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1 INTRODUCTION

Structure preserving time integrators are meanwhile well-known as time integrators, which
lead to enhanced robustness and longtime stability. An often used time approach is the discrete
derivative of Gonzalez [1]. Furthermore, the Hamiltonian formulation leads for elastodynamics
to an energy-momentum scheme (see Gonzalez [2]).Öttinger [9] introduced for thermodynam-
ics a GENERIC (General Equations for Non-Equilibrium Reversible Irreversible Coupling) for-
mat which includes a dissipative term. The state variables are the Poissonian variables (config-
uration, linear momenta and entropy). This framework is given for closed systems. In Romero
[11, 12, 13] the GENERIC format is applied with partitioned discrete gradients (see Gonzalez
[1]) for a thermoelastic double pendulum and a thermoelastic continuum. This time integrator
is called the TC (Thermodynamically Consistent) integrator and preserves the underlying struc-
tural properties. In Krüger et al.[5] a comparison of the TCintegrator and two other structure
preserving time integrators is presented.

In the present work, the GENERIC framework and the TC integrator will be enhanced to
thermoviscoelastic systems. For a double pendulum, the enhanced GENERIC format and the
enhanced TC algorithm is considered in Krüger et al.[6]

2 THERMOVISCOELASTIC CONTINUUM

The motion of a continuumB with a particleP and the boundary∂B over a timet is de-
scribed with two configurations (see Figure 1). Here, the reference configurationB0 is given

B ∂B

B0

∂B0

Bt

∂Bt
x

ϕ

φ
φt

X

xu

P
ei

X

Figure 1: Configurations of a continuum

at timet = 0 and the current configurationBt is defined at a timet > 0. ∂B0 and∂Bt are
the corresponding boundaries. The particleP is transformed with the nonlinear mappingsφ
andφt to the reference configurationB0 and the current configurationBt (see Holzapfel [4]),
respectively:

X = φ(P, t) x = φt(P, t) (1)

X andx denote the position vectors of the pointsX andx, respectively. The nonlinear mapping
ϕ maps the position vectorX to the current configurationx by:

x = ϕ(X, t) (2)
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The displacement fieldu is defined by the difference of the position vectors:

u(X, t) = x(X, t)−X (3)

The velocity and acceleration field can be derived by the firstand second partial time derivative
of the mappingϕ:

v(X, t) =
∂ϕ(X, t)

∂t
=: ϕ̇ a(X, t) =

∂2ϕ(X, t)

∂t2
=: ϕ̈ (4)

These derivatives can also be writtenv = ẋ anda = ẍ. Hence, a dot denotes a partial time
derivative at a fixed position vectorX. The deformation of the continuum is given by the
deformation gradient

F =
∂ϕ(X, t)

∂X
= Gradϕ(X, t) (5)

With the definition of the Jacobian determinantJ = detF > 0, the volume element of the
reference configuration V. can be related to the current volume v. = J V. . The deformation
gradient leads to the strain of continuum, which is denoted by the right Cauchy-Green strain
tensor

C = F T F (6)

In order to describe thermal behavior, the entropy is chosenas state variable:

s = s(X, t) (7)

This variable was also selected in the works of Romero [12, 13]. The underlying constitutive
law of the internal energye yields the temperature

θ =
∂e

∂s
(8)

The viscous (history dependend) material behavior is described by an isotropic internal vari-
able (see Reese et al. [10] & Groß [3]):

Ci = F
T

i Fi (9)

B0 Bt

Bz X

X x

ϕ

F

Fi
Fe

Figure 2: Intermediate configuration of the continuum
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Melanie Krüger, Michael Groß & Peter Betsch

Fe describes the elastic deformation gradient. The internal variableCi is symmetric and char-
acterizes the internal structure of the continuum with irreversible (dissipative) effects. Note that
the internal deformation gradientFi is given on the intermediate configurationBz (see Figure
2), which is a transformation of two inelastic states. In Noll [7, 8] the material isomorphism
is introduced, which establishes a connection between two particles. The isotropic material
behavior leads to the elastic strain measure

Ce = C C−1
i (10)

3 PHYSICAL STRUCTURE

The total energyH of the continuum is given by the total kinetic energyT and the total
internal energyE:

H = T (p) + E (C , s, Ci) (11)

The total kinetic energyT and the total internal energyE are the integrals over the domain of
the kinetic energieT and the internal energye:

T (p) =

∫

B0

T (p) E (C , s, Ci) =

∫

B0

e (C , s, Ci) (12)

Furthermore, the total kinetic energyT is given in terms of the linear momentap = ρ0 v and
the constant densityρ0 by:

T (p) =

∫

B0

1

2 ρ0
p · p (13)

The total entropy of the systemS is defined by the local entropys functions:

S =

∫

B0

s (14)

As stability criterion, the Lyapunov functionL is introduced:

L = H − θ∞ S (15)

The temperaturθ∞ is the reference temperature.

4 STRONG EVOLUTION EQUATIONS

The strong evolution equations are the two equations of motion, which are well known from
elastodynamics, the thermal evolution equation and the viscous evolution equation:

ϕ̇ =
1

ρ0
p

ṗ = Div P

ṡ = −1

θ

[

DivQ−Dint
]

Ċi = 2 CiV
−1 : Σvis

(16)

The first Piola-Kirchhoff stress tensorP depends on the second Piola-Kirchhoff stress tensorS :

P = F S S = 2
∂e

∂C
(17)
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As constitutive equation for the first Piola-Kirchhoff heatflux Q the Fouriers law of heat con-
duction is used with the assumption of isotropy:

Q = −K Grad θ (18)

The isotropic heat conduction tensorK is defined by

K = κ J C−1 (19)

whereκ > 0 denotes the heat conduction parameter and the Jacobian determinantJ =
√
det C

is evaluated with the right Cauchy-Green strain tensorC . The viscous evolution equation leads
to the viscous Mandel stressΣvis, which depends on the inelastic stress tensorΓ :

Σvis = 2 Ci Γ Γ = − ∂e

∂Ci
(20)

This inelastic stressΓ can be recovered in the internal dissipation

Dint = Γ : Ċi (21)

The fourth order compliance tensorV
−1 is split into a deviatoric and volumetric part:

V
−1 =

1

2 V dev
I
devT +

1

V vol ndim

I
vol (22)

with
I
devT = I

T − I
vol

I
vol =

1

ndim

I ⊗ I

I
T = I⊗I

(23)

The deviatoric and volumetric parameterV dev andV vol as well as the dimensionndim define
this compliance tensor with the restrictions

V dev > 0 V vol >
2 V dev

ndim

(24)

5 ENHANCED GENERIC

The GENERIC format was introduced byÖttinger [9]. This format is given for thermal and
mechanical isolated systems. For the thermoviscoelastic continuum, the GENERIC system will
be enhanced. The initial value problem is stated by

ż =
[

L(z) + Lvis(z)
]

δH(z) +
[

M(z) +Mvis(z)
]

δS(z)

z(t = 0) = z0
(25)

The state vectorz ∈ R
13 is defined by the mappingϕ, the linear momentap, the entropys and

the internal variable in Voigt notationCi:

z =









ϕ

p

s

[Ci]vn









(26)
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The matricesL andM denote the skew-symmetric Poisson matrix and the symmetricpositive-
semidefinite friction matrix, respectively. The viscous evolution equation leads to the enhanced
symmetric matricesLvis andMvis. These matrices are as follows:

L =















03×3 I3×3 03×7

−I3×3 03×3 03×7

07×3 07×3 07×7















Lvis =







07×7 07×6

06×7 −4 [V1 Ci⊗Ci + V2 Ci ⊗ Ci]vn







M =















06×6 06×1 06×6

01×6 −1

θ
DivQ 01×6

06×6 06×1 06×6















Mvis =















06×6 06×1 06×6

01×6 1

θ
Dint 01×6

06×6 06×1 06×6















(27)

Here, the parameterV1 andV2 are shorthand notations for the expressions

V1 =
1

2 Vdev
V2 =

1

Vvol n
2
dim

− 1

2 Vdev ndim

(28)

The functional derivatives of the total energyδH and total entropyδS with respect to the state
vectorz are

δH =



















−Div P
1

ρ0
p

θ

− [Γ ]vn



















δS =

















0(3×1)

0(3×1)

1

0(6×1)

















= const. (29)

The related degeneracy conditions for the enhanced GENERICformat are similar to the degen-
eracy conditions of the GENERIC format, which means:

∫

B0

δH ·M δS = 0

∫

B0

δS ·
[

L+ Lvis
]

δH = 0 (30)

Furthermore, the following enhanced degeneracy conditionis necessary:
∫

B0

δH ·Mvis δS = −
∫

B0

δH · Lvis δH (31)

5.1 Structural properties

The enhanced GENERIC format is linked to certain structuralproperties, which are fullfilled
neglegting external forces. The first special property is the total energy consistency:

Ḣ =

∫

B0

δH · ż (32)
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Including the skew-symmetry ofL and the degeneracy condition of Eq. (30)1, the rate of the
total energy yields

Ḣ =

∫

B0

δH · Lvis δH + δH ·Mvis δS

= 0

(33)

due to the enhanced degeneracy condition Eq. (31). Analogously, the rate of the total entropy
Ṡ is given as follows:

Ṡ =

∫

B0

δS · ż

=

∫

B0

δS ·
[

M+Mvis
]

δS

(34)

Here, the degeneracy condition of Eq. (30)2 is inserted. The evaluation of the MatricesM and
Mvis, as well as the vectorδS leads to

Ṡ =

∫

B0

1

θ

[

κ J θ3 Grad
1

θ
· C−1 Grad

1

θ
+Dint

]

≥ 0

=

∫

B0

Dtot

θ

(35)

Generally, the rate of the Lyapunov functionV implies a stable equilibrium state, iff

V̇ ≤ 0 (36)

Here, the rate of the Lyapunov function is once more given by:

V̇ = Ḣ − θ∞ Ṡ (37)

Inserting the two properties of Eqs. (33)2 and (35)2, the stable equilibrium state is guaranteed
by:

V̇ = −θ∞
∫

B0

Dtot

θ
≤ 0 (38)

5.2 Weak evolution equations

The weak evolution equations of the enhanced GENERIC formatcan be derived by the total
energy balance of Eq. (32). The functional dervative of the total energyδH yields the test
functionswz. The first and second entry will be replaced by the strong evolution equations:

wz =









wϕ

wp

ws

[wCi
]vn









=









−ṗ

ϕ̇

θ

− [Γ ]vn









(39)
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The four weak equations of the enhanced GENERIC are
∫

B0

wz · ż =

∫

B0

wϕ · 1

ρ0
p+

∫

B0

wp · Div P −
∫

B0

ws

θ

[

DivQ−Dint
]

+

∫

B0

wCi
: 2 CiV

−1 : Γ vis

(40)

6 DISCRETIZATION IN TIME

The weak evolution equations are now discretized in time with the enhanced TC (Thermo-
dynamically consistent) integrator. The TC integrator forthermoelastic systems was introduced
by Romero [11] for a thermoelastic double pendulum. This integrator is now enhanced for the
thermoviscoelastic continuum.

The time intervalI = [0, T] is split into finite time elements of the numbern = [1, . . . , ntp]
with the time intervalsIn = [tn, tn+1]. The time step size is denoted byhn = tn+1 − tn. The
enhanced TC integrator is based upon the G-equivariant functional derivative of Gonzalez [1].
The time discrete weak evolution equations are given by

Hn+1 −Hn

hn
=

∫

B0

wz ·
zn+1 − zn

hn

=

∫

B0

wz ·
([

L + L
vis
]

∆GH +
[

M+ M
vis
]

∆GS
)

(41)

where

L =









03×3 I3×3 03×7

−I3×3 03×3 03×7

07×3 07×3 07×7









, Lvis =





07×7 07×6

06×7 −4
[

V1 Ci
n+1

2

⊗Ci
n+1

2

+ V2 Ci
n+1

2

⊗ Ci
n+1

2

]

vn





M =











06×6 06×1 06×6

01×6 − 1

θ 1

2

DivQ 1

2

01×6

06×6 06×1 06×6











, Mvis =









06×6 06×1 06×6

01×6 1

θ
Dint

1

2

01×6

06×6 06×1 06×6









(42)
The specific evaluation of the internal variablesCi

n+1
2

, the temperaturesθ 1

2

, the heat flux vector

Q 1

2

and the internal DissipationDint
1

2

is done in the following way:

(·)n+ 1

2

=
1

2

[

(·)n + (·)n+1

]

Q 1

2

= −κ
√

det Cn+ 1

2

C−1
n+ 1

2

Grad θ 1

2

θ 1

2

= Dse Dint
1

2

= 2 Ci
n+1

2

Γ 1

2

: V−1 : 2 Ci
n+1

2

Γ 1

2

(43)

Here, the partitioned discrete gradient operatorD (·) is used (see Gonzalez [1]) for the derivative
of the internal energye with respect to the entropys. The G-equivariant functional derivatives
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of the total energy and entropy are given by

∆GH =















−Div
(

Fn+ 1

2

S 1

2

)

D||p||2T 2pn+ 1

2

θ 1

2

−
[

Γ 1

2

]

vn3















∆GS =











0(3×1)

0(3×1)

Dss

0(6×1)











(44)

The second Piola-Kirchhoff stress tensorS 1

2

and the inelastic stress tensorΓ 1

2

are also evaluated
with partitioned discrete gradients:

S 1

2

= 2 DCe Γ 1

2

= −DCie (45)

7 DISCRETIZATION IN SPACE

The spatial discretization of the weak evolution equationsis performed with the Finite-
Element-Method. Therefore, the continuum bodyB is approximated withne elements of
Ωe ⊂ Bh:

B ≈ Bh =

ne
⋃

e=1

Ωe (46)

The discrete boundary∂Bh is analogously given by∂Bh =
⋃ne

e=1 ∂Ωe. The isoparametric
concept leads to ansatz functions, which are used for the geometry as well as for the field
variables. These ansatz functionsNA(ξ) are defined on a reference elementΩ� with normalized
coordinatesξ. This leads to the following approximated test and trial functions:

Xe =

naf
∑

A=1

NA XeA we
ϕ =

naf
∑

A=1

NA weA
ϕ

xe =

naf
∑

A=1

NA xeA we
p =

naf
∑

A=1

NA weA
p

pe =

naf
∑

A=1

NA peA we
s =

naf
∑

A=1

NA weA
s

se =

naf
∑

A=1

NA seA

(47)

The viscous test and trial functions are evaluated on the element level. Hence, it is not necessary
to approximate these functions in space. We denote the test function byw e

Ci
and the internal

variable byC e
i . The deformation gradientF e is approximated as follows:

F e = j e J e−1

(48)

The gradientsj e andJ e are defined as

J e =
∂Xe

∂ξ
j e =

∂xe

∂ξ
(49)

The ordinary finite element approximation of the testfunctionwe
s in Eq. (47) pose a problem.

An admissible testfunction is the temperatureθe, but this testfunction is not approximated in

9



Melanie Krüger, Michael Groß & Peter Betsch

Eq. (47) and is not consistent with Eq. (32). Therefore, a projection of the testfunctionθP
e

leading to stability (see Romero [12]) with the node vectorθp
eA

= weA
s :

θp
e

=

naf
∑

A=1

NA θp
eA

(50)

based on an additional time discrete equation:
∫

B0

wθp θ
p =

∫

B0

wθp θ 1

2

(51)

is necessary. The testfunction of this equation can be approximated like the other testfunctions
and is given by:

wθp = −sn+1 − sn

hn
(52)

8 DISCRETE EVOLUTION EQUATIONS

The discrete weak evolution equations are now given for the enhanced GENERIC system.
The global system includes the equations of motion, the thermal evolution equation and the
projection:

ne
⋃

e=1

naf
∑

A,B=1

w
eA
ϕ ·HAB xeB

n+1 − xeB
n

hn
=

ne
⋃

e=1

naf
∑

A,B=1

w
eA
ϕ ·MAB

ρ−1

0

peB
n+ 1

2

ne
⋃

e=1

naf
∑

A,B=1

w
eA
p ·HAB peB

n+1 − peB
n

hn
=

ne
⋃

e=1

naf
∑

A=1

w
eA
p ·

(

FexteA
1

2

− FinteA
1

2

)

ne
⋃

e=1

naf
∑

A,B=1

w
eA
s HAB s

eB
n+1 − seBn
hn

=
ne
⋃

e=1

naf
∑

A=1

w
eA
s

(

T exteA − T inteA
)

ne
⋃

e=1

naf
∑

A,B=1

w
eA
θp H

AB θp
eB

=

ne
⋃

e=1

naf
∑

A=1

w
eA
θp

∫

Ω�

NA θe1
2

det J e

(53)

The local system is given by the viscous evolution equation:

ne
⋃

e=1

∫

Ω�

w
e
Ci

:
C e
in+1

− C e
in

hn
=

ne
⋃

e=1

∫

Ω�

w
e
Ci

: 2 C e
i
n+1

2

V
−1e : 2 C e

i
n+1

2

Γ e
1

2

(54)

The internal forcesFinteA
1

2

and external forcesFexteA
1

2

are given below:

FinteA
1

2

=

∫

Ω�

F e
n+ 1

2

⊗GradNA : S e
1

2

det J e FexteA
1

2

=

naf
∑

B=1

HAB
r TeB

1

2

(55)

The vectorTeB
1

2

is the node vector of the first Piola-Kirchhoff stress vectorTe
1

2

=
∑naf

A=1N
A TeA

1

2

.
Analogously, the thermal evolution equation exhibits internal and external parts with the exter-
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nal heat fluxQe
1

2

=
∑naf

A=1N
AQeA

1

2

:

T inteA =

∫

Ω�

[[

GradNA

θp
e − NA

θp
e2

Grad θp
e

]

· K e
1

2

Grad θp
e − NA

θp
e D

inte
1

2

]

det J e

T exteA =

naf
∑

B=1

∫

∂Ω�

1

θpe
NANB det J e

r Q
eB
1

2

(56)

The scalarsHAB, MAB
ρ−1

0

andHAB
r denote the boundary and volume integrals over the ansatz

functions with the determinant over the boundariesdet J e
r = ||Xe

,ξ
×Xe

,η
||:

HAB =

∫

Ω�

NANB det J e MAB

ρ−1

0

=
1

ρ0
HAB HAB

r =

∫

∂Ω�

NANB det J e
r (57)

9 NUMERICAL EXAMPLES

The internal energye is of Simo-Pister type and can be split into a compressible, aviscous
and a thermal part:

e(C , s, Ci) = ψcom(C) + ψvis(C , Ci) + ethe(C , s) (58)

with
ψcom =

µ

2
(tr C − ndim − 2 ln) + ψvol(J)

ψvis =
µe

2
(tr Ce − ndim − 2 ln Je) + ψvol(Je)

ethe = k [θ(C , s)− θ∞] + θ∞ ndim β
∂ψvol(J)

∂J

(59)

µ andλ are the Laḿe parameters,µe andλe are the viscous Laḿe parameters,k is the heat
coefficient andβ is the coupling parameter. The volumetric free energyψvol(J(·)) is given by:

ψvol(J(·)) =
λ(·)

2
[ln2 J(·) + (J(·) − 1)2] (60)

The parameters for the following examples are given below:

λ = 3000 µ = 750 ρ0 = 8.93

λe = 3000 µe = 750 Vdev = 100 Vvol = 500

κ = 2 k = 150 θ∞ = 300 β = 0.0001

(61)

The continuum body is a disk (see Figure 3). This disk has an inner radiusr1 = 0.8 and an outer
radiusr2 = 2.0. The thickness of the disk ist = 0.4. The initial temperature is logarithmic
distributed from the temperature at the outer ring of380 K to a temperature at the inner ring of
310 K.

For the first example we prescribe mechanical Dirichlet boundaries for the inner ring, which
means a fixed position, and an initial angular velocityω0

z = 60 elsewhere (see Figure 4).
In the second example we state mechanical Neumann-Boundaries given by the traction vec-

tor Th
n+ 1

2

=
∑naf

B NB tB sin
(

2π
8
tn+ 1

2

)

with tB =
[

0 100 0
]T

, see Figure 5 and in the
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r1
r2

Figure 3: Continuum disk and the initial temperature contour

third example we prescribe thermal Neumann-boundaries with the boundary heat fluxQh
n+ 1

2

=
∑naf

B NB 1000 sin
(

2π
8
tn+ 1

2

)

, see Figure 6. These boundary conditions are applied for8 s.

After that the traction vector and the heat flux vanish and thesystem is totally closed. The time
step size is∆t = 0.02 s.

H

S

V

time time

time

0 0

0

10 10

10

20 20

20

30 30

30

4×10
ω0
z

3.5

3.4

3.3

3.1

3.0

2.9

2.7

2.8

×103

103

104

105

Figure 4: Example with Dirichlet boundaries and initial angular velocity, total energyH , total entropyS and
Lyapunov functionV

In Figure 4 the structural properties of the enhanced GENERIC system are shown for the
first example. Here, external forces are neglected, this means that the disk is thermally and
mechanically closed. The temperature balances to one temperature for the whole continuum.
The total energyH is conserved for the total simulation time of30 s. The total entropyS is
increasing and the Lyapunov functionV is decreasing, which indicates a stable system.

Figure 5 shows the result for the disk with Neumann boundaries related with the traction

12



Melanie Krüger, Michael Groß & Peter Betsch

H

S

V

time

timetime

T

T

0

00

5

55

10

1010

×103

×10 4

3.5

3.5

3.4

3.3

4.0

3.0

2.5103

104

Figure 5: Example with Neumann boundaries for the traction vector, total energyH , total entropyS and Lyapunov
functionV

vectorTh
n+ 1

2

. This Neumann boundaries affect the total energyH, as well as the total entropy
S and the Lyapunov functionV . After 8 s the loads are removed and the structural properties
of the enhanced GENERIC format are visible.

H

S

V

time time

time

Q

0 0

0

5 5

5

10 10

10

×10

×103

4

3.3

3.5

3.6

3.7

3.0

3.2

3.4

3.4

2.8104

106

108

110

Figure 6: Example with Neumann boundaries for the heat flux, total energyH , total entropyS and Lyapunov
functionV

The third example is the disk with Neumann boundaries related to the boundary heat flux
Qh

n+ 1

2

. The results are shown in Figure 6. Once again these boundaries affect the structural

properties (H, S andV ). After the 8 s of loads, the total energyH is conserved, the total
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entropyS increases and the Lyapunov functionV decreases.

10 CONCLUSIONS

Structure preserving time integrators have become more andmore important in the last
decades. The preservation of the structural properties of the underlying system leads to long-
time stability and computational robustness. In this work,we have newly proposed the enhanced
GENERIC framework in connection with an enhanced TC integrator for thermoviscoelastic sys-
tems. This framework is based upon the Poissonian formulation of thermodynamics, which uses
the configuration, the linear momenta, the entropy and the internal variables as state variables.
The numerical examples show that the structural propertiesare preserved for closed systems.
This means a constant total energy, an increasing total entropy and a decreasing Lyapunov func-
tion.
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[5] M. Krüger, M. Groß and P. Betsch: A comparison of structure-preserving integrators for
discrete thermoelastic systems.Comput. Mech., 47 (2011), 701–722.
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