Höhere Thermodynamik

Prof. Dr.-Ing. Thomas Seeger

SS 2025

Inhalte

8. Theri	modynamische Eigenschaften reiner Fluide	174
8.1	Mehrphasengebiete	176
8.2	Thermische Zustandsgrößen fluider Stoffe	181
8.3	Fundamentalgleichungen	183
8.4	Kalorische Zustandsgrößen fluider Stoffe	186
8.5	Die Phasengleichgewichtsbedingung	188
8.6	Gleichungen von Clausius-Clapeyron	194
8.7	Zustandsdiagramme und Zustandstafeln	196
8.8	Der kritische Punkt	207
9. Kreis	prozesse mit Phasenübergang	209
9.1	Wiederholung	212
9.2	Clausius-Rankine-Prozess	219
9.3	Ausblick	230
9.4	Kreisprozess einer Kältemaschine und Wärmepumpe	235
9.5	Kältemittel (Zusatz)	241
<u>10. Einfü</u>	hrung in die Stoffgemische	244
10.1	Beschreibung der Zusammensetzung von Gemischen	246
10.2	Mischungsgrößen bei Gemischen Idealer Gase	252
10.3	Gleichgewichtsthermodynamik	256

<u>11. Feuc</u>	hte Luft und Einführung in die Klimatechnik Ausblick	258					
11.1	Feuchte Luft: Ideales Gas-Dampf-Gemisch	262					
11.2	Zustandseigenschaften der feuchten Luft	264					
11.3	Wassergehalt feuchter Luft	265					
11.4	Spezifisches Volumen, spezifische Enthalpie						
	und spezifische Entropie der feuchten Luft	269					
11.5	Das h _{1+x} , x–Diagramm	276					
11.6	Prozesse mit feuchter Luft	281					
11.7	Klimaanlage	295					
12. Einführung in die Kältetechnik							
12.1	Verfahren zur Gasverflüssigung	298					
12.2	Kältemaschinen	303					

8. Thermodynamische Eigenschaften reiner Fluide

Bisher: 1 + 2 Hauptsatz angewandt auf reine Stoffe oder Gemische in einer Phase

8. Thermodynamische Eigenschaften reiner Fluide

Warum ist der Phasenübergang von großer thermodynamischer Bedeutung?

Braunkohlekraftwerk Lippendorf (2x933 MW)

Wärmepumpe

Dampflokomotive

Durch den Phasenübergang kann eine große Menge Energie transportiert werden!

8.1 Mehrphasengebiete

Neue Begriffe: Nassdampfgebiet, Schmelzgebiet, Sublimationsgebiet

<u>Definition Phasengleichgewicht:</u> 2 Phasen (am Tripelpunkt alle 3 Phasen) eines reinen Stoffes stehen miteinander im thermodynamischen Gleichgewicht

Definition Zweiphasengebiet:

Zustandsgebiet, in dem die (bisher getrennt betrachteten) beiden Phasen zusammen vorkommen.

Beispiel: Isobarer Verdampfungsvorgang

8.1 Mehrphasengebiete

8.1 Mehrphasengebiete

Projektionen des p, v, T- Diagramms

Projektion des p, v, T- Diagramms am Beispiel des p,T- Diagramms

Dampfdruckkurve (*p*,*T*-Diagramm) ist Projektion von rechts auf *p*,*v*,*T*-Gebiet

8. Thermodynamische Eigenschaften reiner Fluide

Bisher: 1 + 2 Hauptsatz angewandt auf reine Stoffe oder Gemische in einer Phase

8.2 Thermische Zustandsgleichung fluider Stoffe

<u>Bisher</u>

z.B. thermische Zustandsgleichung "ideales Gas":

<u>Jetzt</u>

Beschreibung realer Fluide:

Für jede der Phasen Gas, Flüssigkeit und Festkörper gilt die thermische Zustandsgleichung in der Form:

<u>Näherungsansätze:</u>

- 1. Zustandsgleichung von van der Waals:
 - b: proportional dem Eigenvolumen der Moleküle
 - a/v^2 : berücksichtigt die Anziehungskräfte

$$z = \frac{p \cdot v}{R \cdot T} = 1$$

$$p = p(T,v)$$
$$v = v(T,p)$$

$$p = \frac{R \cdot T}{v - b} - \frac{a}{v^2} \tag{8.1}$$

8.2 Thermische Zustandsgleichung fluider Stoffe

2. Redlich-Kwong Zustandsgleichung:

 Virialform der thermischen Zustandsgleichung: (Dichteentwicklung)

$$p = \frac{R \cdot T}{v - b} - \frac{a}{T^{0,5} \cdot v \cdot (v + b)}$$

$$a = \frac{\Omega_a \cdot R^2 \cdot T_K^{2,5}}{p_K}, b = \frac{\Omega_b \cdot R \cdot T_K}{p_K} \quad \Omega_a = 0,42748, \Omega_b = 0,08664$$
(8.2)

$$z = \frac{p \cdot v}{R \cdot T} = 1 + \frac{B(T)}{v} + \frac{C(T)}{v^2} + \frac{D(T)}{v^3} + \dots$$
(8.3)

Virialkoeffizienten (B, C, D, ...) werden im allgemeinen empirisch aus p,v,T-Daten bestimmt

4. Benedikt-Webb-Rubin Zustandsgleichung: (8 stoffspezifische Parameter) $z = \frac{p}{R \cdot T \cdot \rho}$

$$= \frac{p}{R \cdot T \cdot \rho} = 1 + \left(B_0 - \frac{A_0}{R \cdot T} - \frac{C_0}{R \cdot T^3} \right) \cdot \rho + \left(b - \frac{a}{R \cdot T} \right) \rho^2$$

$$+ \left(\frac{a \cdot \alpha}{R \cdot T} \right) \rho^5 + \left(\frac{c}{R \cdot T^3} \right) \rho^2 \cdot \left(1 + \mu \cdot \rho^2 \right) \cdot exp\left(-\gamma \cdot \rho^2 \right)$$

$$(8.4)$$

Stoff	$A_0\left[rac{bar\cdot m^6}{kmol^2} ight]$	$B_0\left[rac{m^3}{kmol} ight]$	$C_0 \cdot 10^6 \left[\frac{bar \cdot m^9 \cdot K^2}{kmol^2} \right]$	$a\left[\frac{bar \cdot m^9}{kmol^3}\right]$
N ₂	1,208 30	0,045 800 0	0,005 967 10	0,015 097 4
CH ₄	1,879 58	0,042 600 0	0,022 869 05	0,500 546
C_2H_6	4,210 62	0,062 772 4	0,181 908	0,349 733
Stoff	$b\left[rac{m^6}{kmol^2} ight]$	$c \cdot 10^6 \left[\frac{bar \cdot m^9 \cdot K^2}{kmol^3} \right]$	$\alpha \cdot 10^{-3} \left[\frac{\mathrm{m}^{9}}{\mathrm{kmol}^{3}} \right]$	$\gamma \cdot 10^{-2} \left[\frac{\mathrm{m}^3}{\mathrm{kmol}^2} \right]$
N ₂	0,001 981 54	0,000 555 326	0,291 545	0,750 000
CH ₄	0,003 380 04	0,002 578 72	0,124 359	0,600 00
C_2H_6	0,011 122 0	0,033 201 2	0,243 389	1,180 00

Tab. 8.1: Einige Zahlenwerte der Konstanten der Benedict-Webb-Rubin-Gleichung (nach Landolt-Börnstein Bd. IV/4a, 1967, Seite 165) -182-

Fundamentalgleichung:

Mathematischer Zusammenhang zwischen thermodynamischen Zustandsgrößen, aus dem allein sich (zumindest vom Prinzip her!) alle thermodynamischen Eigenschaften durch Differentiation berechnen lassen.

Energie: Enthalpie: $H = U + p \cdot V$ $dH = dU + p \cdot dV + V \cdot dp$ 2. HS.: $dU = T \cdot dS - p \cdot dV + \mu \cdot dn$ (8.5) 2. HS.: $dH = T \cdot dS + V \cdot dp + \mu \cdot dn$

 $\implies U(S,V,n)$ (8.6a) (Fundamentalgleichung) $\implies H(S,p,n)$ (8.6c)

$$\implies dU = \frac{\partial U}{\partial S} \cdot dS + \frac{\partial U}{\partial V} \cdot dV + \frac{\partial U}{\partial n} \cdot dn \quad (8.6b) \implies dH = \frac{\partial H}{\partial S} \cdot dS + \frac{\partial H}{\partial p} \cdot dp + \frac{\partial H}{\partial n} \cdot dn \quad (8.6d)$$

$$\xrightarrow{T} -p \quad \mu \quad T \quad V \quad \mu$$
(8.7a) (8.7b) (8.7c) (8.7c) (8.7d) (8.7e) (8.7f)

8.3 Fundamentalgleichungen

Freie Enthalpie: $G = H - T \cdot S$ (8.8)Freie Energie: $F = U - T \cdot S$ (8.9) $dG = dH - T \cdot dS - S \cdot dT$ $dF = dU - T \cdot dS - S \cdot dT$ $dF = dU - T \cdot dS - S \cdot dT$ 2. HS.: $dH = T \cdot dS + V \cdot dp + \mu \cdot dn$ 2. HS.: $dU = T \cdot dS - p \cdot dV + \mu \cdot dn$ \Rightarrow $dG = -S \cdot dT + V \cdot dp + \mu \cdot dn$ \Rightarrow $dF = -S \cdot dT - p \cdot dV + \mu \cdot dn$

 \Rightarrow G(T, p, n) (8.10a) (Fundamentalgleichung) \Rightarrow F(T, V, n) (8.10c)

$$\implies dG = \frac{\partial G}{\partial T} \cdot dT + \frac{\partial G}{\partial p} \cdot dp + \frac{\partial G}{\partial n} \cdot dn \quad (8.10b) \implies dF = \frac{\partial F}{\partial T} \cdot dT + \frac{\partial F}{\partial V} \cdot dV + \frac{\partial F}{\partial n} \cdot dn \quad (8.10d)$$

$$\xrightarrow{-S} V \mu \qquad -S -p \mu$$
(8.11a) (8.11b) (8.11c) (8.11c) (8.11d) (8.11e) (8.11f)

8.3 Fundamentalgleichungen

Merkhilfe für die abhängigen Variablen und beispielhafte Pfade

<u>P</u>raktisch <u>h</u>aben <u>s</u>chon <u>u</u>nsere <u>V</u>orfahren <u>f</u>ür <u>T</u>hermodynamik <u>g</u>eschwärmt

-185-

8.4 Kalorische Zustandsgrößen fluider Stoffe

$$\begin{split} u(T,v) &= \int_{T_0}^T c_v^0 \cdot dT + T^2 \int_{\infty}^v \left[\frac{\partial(p/T)}{\partial T} \right]_v dv_T + u_0^0(T_0) \\ u(T,p) &= \int_{T_0}^T c_p^0 \cdot dT - T^2 \int_0^p \left[\frac{\partial(v/T)}{\partial T} \right]_p dp_T - p \cdot v + u_0^0(T_0) \\ h(T,v) &= \int_{T_0}^T c_v^0 \cdot dT + T^2 \int_{\infty}^v \left[\frac{\partial(p/T)}{\partial T} \right]_v dv_T + p \cdot v + h_0^0(T_0) \\ h(T,p) &= \int_{T_0}^T c_p^0 \cdot dT - T^2 \int_0^p \left[\frac{\partial(v/T)}{\partial T} \right]_p dp_T + h_0^0(T_0) \\ s(T,v) &= \int_{T_0}^T c_v^0 \cdot dT + R \cdot \ln \frac{v}{v_0} + \int_{\infty}^v \left[\left(\frac{\partial p}{\partial T} \right)_v - \frac{R}{v} \right]_v dv_T + s_0^0(T_0,v_0) \\ s(T,p) &= \int_{T_0}^T c_p^0 \cdot dT - R \cdot \ln \frac{p}{p_0} + \int_{\infty}^v \left[\left(\frac{\partial v}{\partial T} \right)_p - \frac{R}{v} \right]_p dp_T + s_0^0(T_0,v_0) \\ f(T,v) &= \int_{T_0}^T c_v \cdot dT_{v=v_0} - T \cdot \int_{T_0}^T c_v(T,v_0) \frac{dT}{T} - \int_{\infty}^v p \cdot dv_T + u(T_0,v_0) - T \cdot s(T_0,v_0) \\ g(T,v) &= \int_{T_0}^T c_p \cdot dT_{p=p_0} - T \cdot \int_{T_0}^T c_v(T,v_0) \frac{dT}{T} - \int_{\infty}^v p \cdot dv_T + p \cdot v + h(T_0,v_0) - T \cdot s(T_0,v_0) \\ g(T,p) &= \int_{T_0}^T c_p \cdot dT_{p=p_0} - T \cdot \int_{T_0}^T c_v(T,v_0) \frac{dT}{T} - \int_{\infty}^v p \cdot dv_T + p \cdot v + h(T_0,v_0) - T \cdot s(T_0,v_0) \\ g(T,p) &= \int_{T_0}^T c_p \cdot dT_{p=p_0} - T \cdot \int_{T_0}^T c_v(T,v_0) \frac{dT}{T} - \int_{\infty}^v p \cdot dv_T + p \cdot v + h(T_0,v_0) - T \cdot s(T_0,v_0) \\ g(T,p) &= \int_{T_0}^T c_p \cdot dT_{p=p_0} - T \cdot \int_{T_0}^T c_v(T,v_0) \frac{dT}{T} + \int_{p_0}^v p \cdot dv_T + p \cdot v + h(T_0,v_0) - T \cdot s(T_0,v_0) \\ \end{bmatrix}$$

-186-

Bei der Beschreibung des thermodynamischen Verhaltens von Wasserdampf ($M = 18,02\frac{g}{mol}$) im Bereich geringer Dichten findet man in der Literatur folgenden Ansatz für die spezifische freie Energie:

$$f = R \cdot T \cdot \left[ln \frac{v_0}{v} + f_0(T) + f_r(T, v) \right]$$

Im Temperaturbereich von 97 °C bis 107 °C kann $f_r(T,v)$ durch folgenden einfachen Ansatz wiedergegeben werden:

$$f_r(T, v) = a + b \cdot \frac{T_0}{T} \cdot \left(\frac{v_0}{v} + c\right)$$

Mit $a = -21,628, b = -13,396, c = -0,000598, T_0 = 273,16K, v_0 = 1\frac{cm^3}{g}$

Berechnen Sie das spezifische Volumen des Wasserdampfes bei t = 100 °C und p = 1,013 bar.

$$p = -\left(\frac{\partial f}{\partial v}\right)_T = -R \cdot T \cdot \left[-\frac{1}{v} - b \cdot \frac{T_0}{T} \cdot \frac{v_0}{v^2}\right] = R \cdot T \cdot \left[\frac{1}{v} + b \cdot \frac{T_0}{T} \cdot \frac{v_0}{v^2}\right]$$
$$\implies \qquad v^2 - \frac{R \cdot T}{p} \cdot v - \frac{b \cdot R \cdot T}{p} \cdot \frac{T_0}{T} \cdot v_0 = 0$$
$$\implies \qquad v_{1/2} = \frac{R \cdot T}{2 \cdot p} \cdot \left[1 \pm \sqrt{\left(1 + \frac{4 \cdot b \cdot T_0}{R \cdot T^2} \cdot v_0 \cdot p\right)}\right]$$

Mit
$$R = \frac{R_m}{M} = \frac{8,3145 \frac{J}{mol \cdot K}}{0,01802 \frac{kg}{mol}} = 461, 4 \frac{J}{kg \cdot K}$$
 und $b = -13,396, T_0 = 273,16K, v_0 = 1\frac{cm^3}{g}$

$$v = \frac{461.4 \frac{J}{kg \cdot K} \cdot 373K}{2 \cdot 1,013 \cdot 10^5 \frac{N}{m^2}} \cdot \left(1 + \sqrt{1 + \frac{4 \cdot (-13.396) \cdot 273.16K}{461.4 \frac{J}{kg \cdot K} \cdot (373K)^2}} \cdot 0,001 \frac{m^3}{kg} \cdot 1,013 \cdot 10^5 \frac{N}{m^2}}\right)$$

$$v = 0,8498 \frac{m^3}{kg} \cdot 1,9884 = 1,690 \frac{m^3}{kg}$$

8. Thermodynamische Eigenschaften reiner Fluide

Bisher: 1 + 2 Hauptsatz angewandt auf reine Stoffe oder Gemische in einer Phase

Nassdampfgebiet, Schmelzgebiet, Sublimationsgebiet

Definition Phasengleichgewicht: 2 Phasen (am Tripelpunkt alle 3 Phasen) eines reinen Stoffes stehen miteinander im thermodynamischen Gleichgewicht.

Definition Zweiphasengebiet:

Zustandsgebiet, in dem die (bisher getrennt betrachteten) beiden Phasen zusammen vorkommen.

Beispiel: Isobarer Verdampfungsvorgang

Bsp.: Nassdampfgebiet

$$U = U' + U'' \text{ bzw. } dU = dU' + dU''$$

$$V = V' + V'' \text{ bzw. } dV = dV' + dV''$$

$$m = m' + m'' \text{ bzw. } dm = dm' + dm''$$
(8.12)

Gleichgewicht:

$$S_{Gleichgewicht} = S_{max} \rightarrow dS_{Gleichgewicht} = 0$$
 (8.13)

Fundamentalgleichung:

$$dS = \frac{dU}{T} + \frac{p \cdot dV}{T} - \frac{g \cdot dm}{T}$$
(8.14)

abgeschlossenes System

$$dS_{Gleichgewicht} = dU' \cdot \left(\frac{1}{T'} - \frac{1}{T''}\right) + dV' \cdot \left(\frac{p'}{T'} - \frac{p''}{T''}\right) - dm' \cdot \left(\frac{g'}{T'} - \frac{g''}{T''}\right) = 0$$
Ithermisches Gleichgewicht
T' = T''

thermisches Gleichgewicht $\Gamma = \Gamma^{n}$ mechanisches Gleichgewichtp' = p''stoffliches Gleichgewichtg' = g''bzw.stoffliches Gleichgewicht (molare Schreibweise) $\mu' = \mu''$

Bsp.: Nassdampfgebiet

Im Zweiphasengebiet ist der Zustand eines Systems allein durch die Angabe von T, p nicht eindeutig bestimmt:

$$V = V' + V'' = m' \cdot v' + m'' \cdot v''$$
(8.16a)

$$U = U' + U'' = m' \cdot u' + m'' \cdot u''$$
(8.16b)

$$H = H' + H'' = m' \cdot h' + m'' \cdot h''$$
(8.16c)

$$S = S' + S'' = m' \cdot s' + m'' \cdot s''$$
(8.16d)

Es fehlt die Angabe der Zusammensetzung des Nassdampfes:

$$x \equiv \frac{m''}{m' + m''} \qquad \begin{array}{c} 0 \le x \le 1 \\ x: \text{ Dampfgehalt} \end{array} \tag{8.17}$$

$$v = (1 - x) \cdot v' + x \cdot v'' = v' + x \cdot (v'' - v')$$
(8.18a)

$$u = (1 - x) \cdot u' + x \cdot u'' = u' + x \cdot (u'' - u')$$
(8.18b)

$$h = (1 - x) \cdot h' + x \cdot h'' = h' + x \cdot (h'' - h')$$
(8.18c)

$$s = (1 - x) \cdot s' + x \cdot s'' = s' + x \cdot (s'' - s')$$
(8.18d)

 \Rightarrow

Veranschaulichung des Hebelgesetzes

Der Zustandspunkt teilt die zwischen den Grenzkurven liegende Strecke der Isobaren (Isothermen) im Verhältnis der Massen von gesättigtem Dampf und siedender Flüssigkeit.

Verdampfungsenthalpie
$$r \equiv h'' - h'$$
Schmelzenthalpie $\Delta^{Schm.}h \equiv h^{++} - h^{+}$ Sublimationsenthalpie $\Delta^{Subl.}h \equiv h'' - h^{+}$

Eine Anekdote erzählt, dass Weinbauern der Toskana an einem warmen Frühlingstag ihren Weinberg bewässerten. Am Abend stellten sie wie üblich die Sprühanlage wieder ab; man war der Überzeugung, dass eine Bewässerung bei einem eventuellen Nachtfrost den Blüten schade.

Nur ein Winzer folgte nicht dieser Tradition - er fand erst bei Morgengrauen wieder den Weg aus einer Kneipe. Am nächsten Tag zeigte sich dann, dass ausgerechnet sein Weinberg der einzige war, der den überraschend eingetretenen Nachtfrost überstanden hatte.

Das auf die Blüten aufgebrachte Wasser wird durch die kalte Luft abgekühlt. Schließlich wird das Wasser von 0°C in Eis von 0°C übergeführt. Hierbei wird die Erstarrungswärme (335 J pro Gramm gefrierenden Wassers) frei. Diese Energie sowie die isolierende Wirkung des "Eispanzers" verhindern das Gefrieren der Blüte.

8.6 Gleichung von Clausius-Clapeyron

Für das Phasengleichgewicht Flüssigkeit-Dampf gilt g'(T,p) = g''(T,p)

Für jede Phase:

$$dg'' = \left(\frac{\partial g''}{\partial T}\right)_p dT + \left(\frac{\partial g''}{\partial p}\right)_T dp$$

=-s'' (8.10b) $\rightarrow = v''$

$$\frac{dg'' = -s''dT + v''dp}{dg' = -s'dT + v'dp} - \frac{dg'' = -s'dT + v'dp}{d(g'' - g') = -(s'' - s')dT + (v'' - v')dp = 0} \quad (\text{da } g' = g'')$$

 \Rightarrow

Gleichung von Clausius-Clapeyron für das Nassdampfgebiet:

$$\frac{dp}{dT} = \frac{s'' - s'}{v'' - v'} = \frac{1}{T} \cdot \frac{h'' - h'}{v'' - v'}$$
(8.21a)

① Dampfdruckkurve

$$\frac{dp}{dT} = \frac{1}{T} \cdot \frac{r}{v'' - v'}$$
(8.21b)

$$\frac{dp}{dT} = \frac{1}{T} \cdot \frac{\Delta^{Schm} \cdot h}{v'' - v'}$$
(8.21c)

$$\frac{dp}{dT} = \frac{1}{T} \cdot \frac{\Delta^{Subl} \cdot h}{v'' - v'}$$
(8.21d)

8.6 Gleichung von Clausius-Clapeyron

Berechnung innerhalb Nassdampfgebiet möglich durch *x* und den Daten an der Siedelinie (') und der Taulinie ('').

	Dampft	atel (Wa	isser) für	das Nass	sdamptg	jebiet	\wedge		
	Temp.	Druck	Flüss.	Dampf	Flüss.	Dampf	h-Verd.	Flüss.	Dampf
	t	р	V'	V″	h'	h"	r	s'	s"
	°C	bar	m³/kg	m ³ /kg	kJ/kg	kJ/kg	kJ/kg	kJ/kgK	kJ/kgK
Tr:	0.01	0.00612	1.00 [.] 10 ^{.3}	206	0	2500	2500	0	9.154
	: 100 :	1.01325	1.04·10 ⁻³	1.67	419	2676	2257	1.307	7.354
	200	15.5	1.16·10 ⁻³	0.13	852	2793	1940	2.331	6.431
	300	85.8	1.40 [.] 10 ^{.3}	21.7·10 ⁻³	1344	2749	1405	3.253	5.704
K:	373.98	220.55	3.11·10 ⁻³	3.11 · 10 ^{−3}	2086	2086	0	4.409	4.409
	Dampfdr	nthalpie <i>r</i>	$\equiv h'' - h'$						

1 mol Eis mit einer Temperatur von -20 °C und 5 mol Wasser mit einer Temperatur von 80 °C werden isobar gemischt.

Welche Temperatur erreicht das nach außen adiabate System im Gleichgewicht?

Stoffdaten:
$$\Delta_{Schmelz}H = 6,01\frac{kJ}{kmol}, c_{p(Eis)} = 36,1\frac{J}{mol\cdot K}, c_{p(Wasser)} = 75,6\frac{J}{mol\cdot K}$$

Die Volumenänderung beim Phasenübergang wird vernachlässigt ($t_{Sch} = 0$ °C).

Λ

1 T T

.

Welche Temperatur erreicht das nach außen adiabate System im Gleichgewicht?

1 T T

1 **1TT**

11 1TT

Enthalpiebilanz:
$$dH = 0, \text{ mit } dH = dH_{Eis} + dH_{H_2O}$$
(1)
Wasser:
$$dH_{H_2O} = n_{H_2O} \cdot c_{p,(H_2O)} \cdot dT$$
(2)
Eis:
$$dH_{Eis} = n_{Eis} \cdot c_{p,(Eis)} \cdot dT + n_{Eis} \cdot \Delta_{Schmelz} h_m + n_{Eis} \cdot c_{p,(H_2O)} \cdot dT$$
(3)
(2) und (3) in (1):

$$n_{Eis} \cdot c_{p,(Eis)} \cdot (T_{Schmelz} - T_{Eis}) + n_{Eis} \cdot \Delta_{Schmelz} h_m + n_{Eis} \cdot c_{p,(H_2O)} \cdot (T_{Gl} - T_{Schmelz}) + n_{H_2O} \cdot c_{p,(H_2O)} \cdot (T_{Gl} - T_{H_2O}) = 0$$

$$n_{Eis} \cdot c_{p,(Eis)} \cdot (T_{Schmelz} - T_{Eis}) + n_{Eis} \cdot \Delta_{Schmelz} h_m + n_{Eis} \cdot c_{p,(H_2O)} \cdot (T_{Gl} - T_{Schmelz}) + n_{H_2O} \cdot c_{p,(H_2O)} \cdot (T_{Gl} - T_{H_2O}) = 0$$

$$T_{Gl} = \frac{1}{c_{p,(H_2O)} \cdot (n_{Eis} + n_{H_2O})} \cdot \left[n_{Eis} \cdot (c_{p,(H_2O)} \cdot T_{Schmelz} - c_{p,(Eis)} \cdot (T_{Schmelz} - T_{Eis})) - \Delta_{Schmelz} h_m + n_{H_2O} \cdot c_{p,(H_2O)} \cdot T_{H_2O} \right]$$

$$T_{Gl} = 324,8 K = 51,8^{\circ}C$$

T,s-Diagramm

Kennzeichen:

- Im Nassdampfgebiet verlaufen die Isobaren horizontal.
- ② Im Gasgebiet sind die Isochoren steiler als die Isobaren.
- Im Flüssigkeitsgebiet verlaufen die Isobaren sehr eng an der Siedelinie (SL).
- ④ Der kritische Punkt liegt wie im p,v- Diagramm im Maximum der Phasengrenzkurven.
- ⑤ Wärme und Dissipationsenergie lassen sich als Flächen unter der zugehörigen Zustandslinie darstellen.
- 6 Es ist eine gute Darstellung von Exergieverlusten möglich.

h,s-Diagramm

Kennzeichen:

- Im Nassdampfgebiet sind die Isobaren Geraden mit der Steigung T.
- ② Die Isobaren haben an der Taulinie keinen Knick.
- ③ Der kritische Punkt K liegt am Wendepunkt der Phasengrenzkurve; hier treffen Siedelinie und Taulinie zusammen.
- ④ Enthalpiedifferenzen können als Stecken eingezeichnet werden, vgl. die Darstellung der Verdampfungsenthalpie r = h"-h' für ein bestimmtes T.

		<u> </u>						
Temperatur	Druck	Spez. V	olumen	Enth	alpie	Vordompfungo	Entro	opie
·		der	des	der	des	verdamprungs-	der	des
		Flüssigkeit	Dampfes	Flüssigkeit	Dampfes	enthalple	Flüssigkeit	Dampfes
t	p	v'	v.,	h'	h ['] '	∆h _v = h" - h'	s'	s"
°C	bar	m³/ka	m³/ka	kJ/ka	kJ/ka	kJ/ka	kJ/(kaK)	kJ/(kaK)
0	0.006108	0.001000	206,3	-0.04	2501.6	2501.6	-0,0002	9,1577
2	0.007055	0.001000	179.9	8.39	2505.2	2496.8	0.0306	9.1047
4	0.008129	0.001000	157.3	16.80	2508.9	2492.1	0.0611	9.0526
6	0.009345	0.001000	137.8	25.21	2512.6	2487.4	0.0913	9.0015
8	0,010720	0,001000	121,0	33,60	2516,2	2482,6	0,1213	8,9513
10	0,012270	0,001000	106,4	41,99	2519,9	2477,9	0,1510	8,9020
12	0,014014	0,001000	93,84	50,38	2523,6	2473,2	0,1805	8,8536
14	0,015973	0,001001	82,90	58,75	2527,2	2468,5	0,2098	8,8060
16	0,018168	0,001001	73,38	67,13	2530,9	2463,8	0,2388	8,7593
18	0,02062	0,001001	65,09	75,50	2534,5	2459,0	0,2677	8,7135
20	0,02337	0,001002	57,84	83,86	2538,2	2454,3	0,2963	8,6684
22	0,02642	0,001002	51,49	92,23	2541,8	2449,6	0,3247	8,6241
24	0,02982	0,001003	45,93	100,59	2545,5	2444,9	0,3530	8,5806
26	0,03360	0,001003	41,03	108,95	2549,1	2440,2	0,3810	8,5379
28	0,03778	0,001004	36,73	117,31	2552,7	2435,4	0,4088	8,4959
30	0,04241	0,001004	32,93	125,66	2556,4	2430,7	0,4365	8,4546
32	0,04753	0,001005	29,57	134,02	2560,0	2426,0	0,4640	8,4140
34	0,05318	0,001006	26,60	142,38	2563,6	2421,2	0,4913	8,3740
36	0,05940	0,001006	23,97	150,74	2567,2	2416,5	0,5184	8,3348
38	0,06624	0,001007	21,63	159,09	2570,8	2411,7	0,5453	8,2962
40	0,07375	0,001008	19,55	167,45	2574,4	2407,0	0,5721	8,2583
42	0,08198	0,001009	17,69	175,81	2577,9	2402,1	0,5987	8,2209
44	0,09100	0,001009	16,04	184,17	2581,5	2397,3	0,6252	8,1842
46	0,10086	0,001010	14,56	192,53	2585,1	2392,6	0,6514	8,1481
48	0,11162	0,001011	13,23	200,89	2588,6	2387,7	0,6776	8,1125
50	0,12335	0,001012	12,05	209,26	2592,2	2382,9	0,7035	8,0776
52	0,13613	0,001013	10,98	217,62	2595,7	2378,1	0,7293	8,0432
54	0,15002	0,001014	10,02	225,98	2599,2	2373,2	0,7550	8,0093
56	0,16511	0,001015	9,159	234,35	2602,7	2368,4	0,7804	7,9759
58	0 18147	0 001016	8 381	242 72	2606.2	2363 5	0.8058	7 9431

Tabelle I: Zustandsgrößen von Wasser und Dampf bei Sättigung Temperaturtafel)¹

¹Auszug: Wagner–Kruse, Zustandsgrößen von Wasser und Wasserdampf, Industrie-Standard IAPWS-IF97, Springer, Berlin, 1998. Bearbeitung: N. lossifova, M. U. Göbel 2003 _199_

Druck Spez. Volumen Enthalpie Entropie Temperatur Verdampfungsder des der des der des enthalpie Flüssigkeit Dampfes Flüssigkeit Dampfes Flüssigkeit Dampfes h" $\Delta h_v = h'' - h'$ s" v' **v**" h' s' t р °C bar m³/kg m³/kg kJ/kg kJ/kg kJ/kg kJ/(kgK) kJ/(kgK) 251,09 60 0,19920 0.001017 7,679 2609,7 2358,6 0,8310 7,9108 62 0,2184 0,001018 7,044 259,46 2613,2 2353,7 0,8560 7,8790 64 0,2391 2348,8 7,8477 0.001019 6,469 267,84 2616.6 0.8809 66 0,2615 0.001021 5,948 276,21 2620,1 2343,9 0,9057 7,8168 68 0.2856 0.001022 5,476 284.59 2623,5 2338,9 0.9303 7,7864 0,001023 292,97 2333,9 70 0,3116 5,046 2626,9 0,9548 7,7565 72 0,3396 0,001024 4,656 301,35 2630,3 2329,0 0,9792 7,7270 74 0.3696 0,001025 4.300 309,74 2633,7 2324,0 1,0034 7,6979 76 0,4019 0.001027 3,976 318,13 2637,1 2319,0 1.0275 7,6693 78 0.4365 0.001028 3,680 326,52 2640,4 2313,9 1,0514 7,6410 80 0,4736 0.001029 3,409 334,92 2643,8 2308,9 1,0753 7,6132 3,162 7,5858 82 0,5133 0,001031 343,31 2647,1 2303,8 1,0990 84 0,5557 0,010320 2,935 351,71 2650,4 2298,7 1,1225 7,5588 86 0.6011 0,001033 2,727 360.12 2653,6 2293.5 1,1460 7,5321 88 0,6495 0,001035 2,536 368,53 2656,9 2288,4 1,1693 7,5058 90 2,361 0,7011 0,001036 376,94 2660,1 2283,2 1,1925 7,4799 92 0,7561 0,001038 2,200 385,36 2663,4 1,2156 7,4543 2278.0 94 0,8146 0.001039 2.052 393,78 2666,6 2272,8 1,2386 7,4291 96 0.8769 0.001041 1,915 402,20 2669,7 2267,5 1,2615 7,4042 98 0,001042 1,789 2672,9 7,3796 0,9430 410,63 1,2842 2262,3 100 1.0133 0,001044 1,673 2676,0 2256,9 1,3069 7,3554 419,06 105 0,001048 1,2080 1,419 440,17 2683,7 2243,5 1,3630 7,2962 110 1.4327 0,001052 1,210 461,32 2691,3 1,4185 7,2388 2230.0 2706,0 120 0,001061 0,8915 7,1293 1,9854 503,72 1,5276 2202,3 125 0,001065 0,7702 2713,0 7,0769 2,3210 524,99 2188,0 1,5813 130 2,7013 0.001070 0,6681 546,31 2719,9 2173,6 1,6344 7,0261 0,5085 2733,1 140 3,6140 0,001080 589,10 2144,0 1,7390 6,9284 145 4,1550 0,001085 0,4460 610,60 2739,3 2128,7 1,7906 6,8815 150 4,7600 0,001091 0,3924 632,15 2745,4 1,8416 6,8358 2113,3 155 5.4330 0.3464 2751,2 6.7911 0,001096 653,78 2097,4 1,8923

Tabelle I: Fortsetzung

Druck Spez. Volumen Enthalpie Entropie Temperatur Verdampfungsder des der des der des enthalpie Flüssigkeit Dampfes Flüssigkeit Dampfes Flüssigkeit Dampfes v" h" $\Delta h_v = h'' - h'$ s" v' h' s' t р °C kJ/(kgK) bar m³/kg m³/kg kJ/kg kJ/kg kJ/kg kJ/(kgK) 160 6,1810 0.001102 0,3068 675,47 2756,7 2081,2 1,9425 6,7475 165 7,0080 0,001108 0,2724 697,25 2762,0 2064,8 1,9923 6,7048 170 0,2426 6,6630 7,9200 0.001115 719,12 2767,1 2048.0 2,0416 180 10,027 0.001128 0,1938 763,12 2776,3 2013,2 2,1393 6,5819 0,001134 185 11.233 0,1739 785.26 2780,4 1995.1 2.1876 6,5424 190 0,001142 0,1563 807,52 2784,3 1976,8 2,2356 6,5036 12,551 0,1272 200 15,549 0,001157 852,37 2790,9 1938,5 2,3307 6,4278 205 17.243 0,001164 0,1150 874,99 2793,8 1918,8 2,3778 6,3906 210 19,077 0.001173 0,1042 897,74 2796,2 1898.5 2,4247 6,3539 220 23,198 0.001190 0.0860 943,67 2799,9 1856,2 2,5178 6,2817 0.0715 230 27,976 0.001209 990,26 2802,0 1811,7 2,6102 6,2107 235 30,632 0,001219 0,0653 1013,8 2802,3 1788.5 2,6562 6,1756 240 33,478 0,001229 0,0597 1037,6 2802,2 1764,6 2,7020 6,1406 250 39,776 0,001251 0,0500 1085,8 2800,4 1714.6 2.7935 6,0708 260 46,943 0,001276 0,0421 1134,9 2796,4 1661,5 2,8848 6,0010 270 55,058 0,001303 0,0356 1185,2 2789,9 1604,7 2,9763 5,9304 275 0.001317 0,0327 2785,5 59,496 1210,9 1574,6 3.0223 5,8947 280 64,202 0.001332 0.0301 1236.8 2780,4 1543.6 3.0683 5.8586 0.001349 0.0277 1263,2 1511.3 5,8220 285 69,186 2774,5 3,1146 0,001366 0,0255 1290,0 2767,6 290 74,461 1477,6 3,1611 5,7848 295 0,0235 80,037 0,001384 1317,3 2759,8 1442,5 3,2079 5,7469 300 85,927 0.001404 0.0217 1345,0 2751,0 1406.0 3,2552 5,7081 310 98.700 0.001448 0.0183 1402.4 2730,0 1327,6 3,3512 5,6278 0.001499 320 112,89 0,0155 1462,6 2703,7 5,5423 1241,1 3,4500 330 128,63 0.001562 0.0130 1526,5 2670,2 1143,7 3,5528 5,4490 340 146.05 0.001639 0.0108 1595.5 2626.2 1030.7 3.6616 5,3427 350 165,35 0,001741 0,0088 1671,9 2567,7 895,8 3,7800 5,2177 360 186.75 0.001896 0,0069 1764,2 2485,4 3,9210 5,0600 721,2 370 0,0050 1890,2 210,54 0,002214 2342,8 452,6 4,1108 4,8144 374,15 221.20 0,00317 0,00317 2107,4 0,0 4.4429 4.4429 2107,4

Tabelle I: Fortsetzung

Tabelle II: Zustandsgrößen von Wasser und überhitztem Dampf. Oberhalb der waagerechten Striche innerhalb der Tabellen herrscht flüssiger, darunter dampfförmiger Zustand.

p →	0,1 bar, t _s = 45,833°C			1,0 bar, t _s = 99,632°C			5,0 ba	r, t _s = 15	1,84°C	10 bar, t _s = 179,88°C		
	٧"	h"	s"	٧"	h"	s''	v"	h"	s''	٧"	h"	s"
	14,67	2584,8	8,1511	1,694	2675,4	7,3598	0,3747	2747,5	6,8192	0,1943	2776,2	6,5828
t,	ν,	h,	S,	ν,	h,	S,	ν,	h,	S,	ν,	h,	S,
°C	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)
0	0,001000	0,0	0,000	0,001000	0,1	0,000	0,001000	0,5	0,000	0,000999	1,0	0,000
5	0,001000	21,0	0,076	0,001000	21,1	0,076	0,000999	21,5	0,076	0,000999	22,0	0,076
10	0,001000	42,0	0,151	0,001000	42,1	0,151	0,001000	42,5	0,151	0,000999	43,0	0,151
20	0,001002	83,9	0,296	0,001002	84,0	0,296	0,001002	84,3	0,296	0,001001	84,8	0,296
40	0,001008	167,5	0,572	0,001008	167,5	0,572	0,001008	167,9	0,572	0,001007	168,3	0,572
60	15,337	2611	8,233	0,001017	251,2	0,831	0,001017	251,5	0,831	0,001017	251,9	0,830
80	16,268	2649	8,344	0,001029	335,0	1,075	0,001029	335,3	1,075	0,001029	335,7	1,075
100	17,197	2687	8,448	1,6964	2676	7,363	0,001044	419,4	1,307	0,001043	419,7	1,306
125	18,355	2735	8,572	1,8174	2727	7,493	0,001065	525,2	1,581	0,001065	525,5	1,581
150	19,513	2783	8,689	1,9366	2776	7,614	0,001091	632,2	1,842	0,001090	632,5	1,841
175	20,669	2831	8,799	2,0549	2826	7,728	0,399411	2801	6,942	0,001121	741,1	2,091
200	21,825	2879	8,904	2,1724	2875	7,835	0,424988	2855	7,060	0,205944	2828	6,694
225	22,981	2928	9,004	2,2894	2925	7,937	0,449911	2908	7,169	0,219613	2886	6,815
250	24,136	2977	9,101	2,4061	2974	8,034	0,474403	2961	7,272	0,232721	2943	6,926
275	25,290	3027	9,193	2,5225	3024	8,127	0,498597	3013	7,368	0,245465	2998	7,028
300	26,445	3076	9,282	2,6388	3074	8,216	0,522577	3064	7,461	0,257960	3051	7,124
325	27,600	3126	9,367	2,7549	3125	8,302	0,546400	3116	7,549	0,270278	3105	7,215
350	28,754	3177	9,450	2,8709	3175	8,385	0,570106	3168	7,633	0,282467	3158	7,302
375	29,908	3228	9,530	2,9868	3226	8,466	0,593718	3220	7,715	0,294553	3211	7,386
400	31,062	3279	9,608	3,1026	3278	8,544	0,617248	3272	7,794	0,306556	3264	7,466
450	33,371	3383	9,757	3,3341	3382	8,693	0,664141	3377	7,945	0,330385	3371	7,619
500	35,679	3489	9,898	3,5654	3488	8,835	0,710870	3484	8,088	0,354045	3478	7,763
550	37,987	3596	10,033	3,7966	3595	8,969	0,757482	3592	8,223	0,377586	3587	7,899
600	40,295	3705	10,161	4,0277	3705	9,098	0,803990	3701	8,352	0,401022	3697	8,029
650	42,603	3816	10,285	4,2588	3815	9,221	0,850454	3813	8,476	0,424412	3809	8,154
700	44,910	3929	10,403	4,4898	3928	9,340	0,896872	3926	8,595	0,447754	3922	8,273
750	47,218	4043	10,518	4,7208	4042	9,455	0,943250	4040	8,710	0,471056	4037	8,388
800	49,526	4159	10,629	4,9518	4158	9,566	0,989593	4157	8,821	0,494325	4154	8,500

Tabelle II: Fortsetzung

p →	30 bar, t _s = 233,84°C			50 bar, t _s = 263,91°C			100 ba	r, t _s = 31	0,96°C	200 bar, t _s = 365,70°C		
	v"	h"	s"	v"	h"	s"	v"	h"	s"	v"	h"	s"
	0,06663	2802,3	6,1837	0,03943	2794,2	5,9735	0,01804	2727,7	5,6198	0,005877	2418,4	4,9412
t,	ν,	h,	S,	ν,	h,	S,	ν,	h,	S,	ν,	h,	S,
°C	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)
0	0,000999	3,0	0,000	0,000998	5,1	0,000	0,000995	10,1	0,001	0,000990	20,1	0,001
5	0,000999	24,0	0,076	0,000998	26,0	0,076	0,000995	30,9	0,076	0,000991	40,7	0,076
10	0,000999	44,9	0,151	0,000998	46,9	0,151	0,000996	51,7	0,150	0,000991	61,3	0,149
20	0,001000	86,7	0,296	0,000999	88,6	0,295	0,000997	93,2	0,294	0,000993	102,5	0,292
40	0,001007	170,1	0,571	0,001006	171,9	0,570	0,001003	176,3	0,568	0,000999	185,1	0,564
60	0,001016	253,6	0,829	0,001015	255,3	0,828	0,001013	259,4	0,826	0,001008	267,8	0,820
80	0,001028	337,3	1,073	0,001027	338,8	1,072	0,001025	342,8	1,069	0,001020	350,8	1,062
100	0,001042	421,2	1,305	0,001041	422,7	1,303	0,001039	426,5	1,299	0,001034	434,0	1,292
125	0,001064	526,9	1,579	0,001062	528,3	1,577	0,001060	531,8	1,572	0,001054	538,8	1,563
150	0,001089	633,7	1,839	0,001088	635,0	1,837	0,001084	638,1	1,831	0,001078	644,4	1,821
175	0,001119	742,2	2,088	0,001118	743,3	2,085	0,001114	746,0	2,079	0,001106	751,5	2,066
200	0,001155	853	2,328	0,001153	853,8	2,325	0,001148	855,9	2,318	0,001139	860,4	2,303
225	0,001199	967	2,563	0,001196	967,5	2,559	0,001189	968,8	2,550	0,001178	971,8	2,532
250	0,070580	2855	6,287	0,001249	1086	2,791	0,001241	1086	2,779	0,001225	1087	2,757
275	0,076097	2928	6,423	0,041403	2838	6,055	0,001306	1209	3,010	0,001284	1207	2,981
300	0,081158	2994	6,541	0,045324	2925	6,210	0,001398	1343	3,249	0,001361	1334	3,209
325	0,085937	3056	6,647	0,048772	3001	6,339	0,019857	2810	5,759	0,001471	1475	3,450
350	0,090528	3116	6,744	0,051944	3069	6,451	0,022421	2924	5,946	0,001666	1648	3,733
375	0,094982	3174	6,836	0,054933	3134	6,554	0,024535	3017	6,093	0,007695	2607	5,234
400	0,099335	3232	6,923	0,057796	3197	6,649	0,026406	3098	6,216	0,009952	2820	5,558
450	0,107831	3344	7,085	0,063271	3317	6,820	0,029741	3242	6,422	0,012706	3062	5,906
500	0,116134	3456	7,235	0,068526	3434	6,977	0,032765	3374	6,598	0,014772	3240	6,144
550	0,124306	3569	7,375	0,073637	3550	7,122	0,035609	3500	6,757	0,016548	3394	6,337
600	0,132373	3681	7,508	0,078640	3665	7,259	0,038333	3624	6,903	0,018165	3537	6,506
650	0,140383	3795	7,635	0,083578	3781	7,387	0,040974	3745	7,038	0,019675	3672	6,656
700	0,148343	3910	7,756	0,088463	3898	7,511	0,043557	3867	7,166	0,021115	3804	6,795
750	0,156263	4027	7,873	0,093307	4016	7,629	0,046095	3989	7,288	0,022504	3934	6,925
800	0,164148	4145	7,986	0,098116	4135	7,743	0,048598	4111	7,405	0,023855	4064	7,049

Tabelle II: Fortsetzung

p →	→ 230 bar		•	250 bar			300 bar				400 bar	·	500 bar		
t,	v",	h",	s",	v ",	h'',	s",	v",	h",	s",	v",	h'',	s",	v",	h",	s",
°C	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)	m³/kg	kJ/kg	kJ/(kgK)
0	0,98894	23,05	0,00065	0,98800	25,02	0,00063	0,98568	29,92	0,00051	0,98114	39,63	0,00003	0,97674	49,20	-0,00076
20	0,99162	105,24	0,29105	0,99077	107,09	0,29057	0,98865	111,68	0,28935	0,98452	120,80	0,28682	0,98049	129,85	0,28419
40	0,99799	187,75	0,56332	0,99716	189,50	0,56253	0,99511	193,87	0,56057	0,99109	202,57	0,55665	0,98718	211,23	0,5527
60	1,00709	270,41	0,81917	1,00625	272,08	0,81814	1,00417	276,25	0,81557	1,00011	284,57	0,81048	0,99617	292,88	0,80544
80	1,01854	353,21	1,06054	1,01767	354,80	1,05928	1,01550	358,79	1,05617	1,01128	366,75	1,05002	1,00719	374,71	1,04398
100	1,03220	436,34	1,28950	1,03127	437,85	1,28803	1,02896	441,64	1,28439	1,02447	449,24	1,27722	1,02012	456,84	1,27021
120	1,04804	519,95	1,50776	1,04702	521,38	1,50607	1,04451	524,96	1,50189	1,03964	532,16	1,4937	1,03494	539,40	1,48571
160	1,0866	689,10	1,9174	1,0854	690,30	1,9152	1,0822	693,40	1,9098	1,0762	699,70	1,8994	1,0704	706,00	1,8893
200	1,1362	861,80	2,2987	1,1345	862,70	2,2959	1,1303	865,20	2,2890	1,1223	870,10	2,2758	1,1148	875,30	2,2631
240	1,2012	1040,6	2,6613	1,1986	1041,1	2,6576	1,1925	1042,4	2,6485	1,1811	1045,4	2,6313	1,1706	1048,9	2,6151
280	1,2908	1230,1	3,0167	1,2866	1229,7	3,0114	1,2766	1229,0	2,9986	1,2586	1228,6	2,9750	1,2428	1229,2	2,9534
320	1,4297	1440,4	3,3835	1,4208	1437,9	3,3746	1,4008	1432,8	3,3540	1,3676	1425,3	3,3180	1,3406	1420,5	3,2871
360	1,7359	1711,1	3,8242	1,6965	1698,1	3,7982	1,6269	1674,9	3,7486	1,5409	1647,0	3,6795	1,4845	1630,1	3,6289
400	7,4789	2689,6	5,3244	6,0010	2578,1	5,1388	2,7930	2150,7	4,4723	1,9096	1930,8	4,1134	1,7301	1874,1	4,0022
440	9,9390	2949,1	5,7000	8,6920	2897,7	5,6018	6,2280	2750,4	5,3435	3,2040	2393,9	4,7803	2,2646	2190,6	4,4584
480	11,654	3121,4	5,9354	10,402	3086,1	5,8592	7,9820	2991,7	5,6734	4,9480	2778,7	5,3067	3,3200	2565,7	4,9702
520	13,084	3263,5	6,1193	11,790	3236,3	6,0536	9,3030	3165,5	5,8984	6,2030	3014,0	5,6115	4,4160	2857,3	5,3480
560	14,358	3390,6	6,2757	13,010	3368,4	6,2162	10,425	3311,6	6,0782	7,2080	3193,2	5,8321	5,3230	3072,3	5,6127
600	15,532	3509,1	6,4146	14,126	3490,4	6,3593	11,431	3443,1	6,2324	8,0770	3345,8	6,0111	6,0980	3247,7	5,8184
640	16,638	3622,3	6,5414	15,170	3606,3	6,4891	12,360	3565,8	6,3698	8,8600	3483,5	6,1654	6,7870	3401,1	5,9903
680	17,693	3732,0	6,6590	16,163	3718,1	6,6089	13,234	3682,9	6,4954	9,5840	3612,0	6,3031	7,4160	3541,2	6,1406
720	18,709	3839,6	6,7696	17,117	3827,3	6,7212	14,067	3796,4	6,6120	10,265	3734,3	6,4289	8,0020	3672,6	6,2757
760	19,696	3945,7	6,8743	18,040	3934,8	6,8272	14,869	3907,4	6,7216	10,914	3852,5	6,5456	8,5550	3798,2	6,3996
800	20,658	4050,8	6,9742	18,938	4041,1	6,9282	15,645	4016,7	6,8254	11,536	3967,8	6,6551	9,0830	3919,5	6,5148

Tabelle III: Zustandsgrößen von 1,1,1,2-Tetrefluorethan C₂H₂F₂ (R 134 a) bei Sättigung¹

Temperatur	Druck	Spez. V	'olumen	Enth	alpie	Vordompfungs	Entropie		
		der	des	der	des	veruamprungs-	der	des	
		Flüssigkeit	Dampfes	Flüssigkeit	Dampfes	enthalple	Flüssigkeit	Dampfes	
t	р	v'	v''	h'	h"	∆h _v = h" - h'	s'	s"	
°C	bar	m³/kg	m³/kg	kJ/kg	kJ/kg	kJ/kg	kJ/(kgK)	kJ/(kgK)	
-100	0,005594	0,631950	25193	75,362	336,85	261,49	0,43540	1,9456	
-95	0,009390	0,637290	15435	81,288	339,78	258,50	0,46913	1,9201	
-90	0,015241	0,642740	9769,8	87,226	342,76	255,53	0,50201	1,8972	
-85	0,023990	0,648310	6370,7	93,182	345,77	252,59	0,53409	1,8766	
-80	0,036719	0,654010	4268,2	99,161	348,83	249,67	0,56544	1,8580	
-75	0,054777	0,659850	2931,2	105,17	351,91	246,74	0,59613	1,8414	
-70	0,079814	0,665830	2059,0	111,20	355,02	243,82	0,62619	1,8264	
-65	0,113800	0,671970	1476,5	117,26	358,16	240,89	0,65568	1,8130	
-60	0,159060	0,678270	1079,0	123,36	361,31	237,95	0,68462	1,8010	
-55	0,21828	0,684750	802,36	129,50	364,48	234,98	0,71305	1,7902	
-50	0,29451	0,691420	606,20	135,67	367,65	231,98	0,74101	1,7806	
-45	0,39117	0,698280	464,73	141,89	370,83	228,94	0,76852	1,7720	
-40	0,51209	0,705370	361,08	148,14	374,00	225,86	0,79561	1,7643	
-35	0,66144	0,712680	284,02	154,44	377,17	222,72	0,82230	1,7575	
-30	0,84378	0,720250	225,94	160,79	380,32	219,53	0,84863	1,7515	
-25	1,0640	0,728090	181,62	167,19	383,45	216,26	0,87460	1,7461	
-20	1,3273	0,736230	147,39	173,64	386,55	212,92	0,90025	1,7413	
-15	1,6394	0,744690	120,67	180,14	389,63	209,49	0,92559	1,7371	
-10	2,0060	0,753510	99,590	186,70	392,66	205,97	0,95065	1,7334	
-5	2,4334	0,762710	82,801	193,32	395,66	202,34	0,97544	1,7300	
0	2,9280	0,772330	69,309	200,00	398,60	198,60	1,0000	1,7271	

¹Nach Tillner-Roth, R.: Die thermodynamischen Eigenschaften von R134a, R152a und ihren Gemischen - Messungen und Fundamentalgleichungen - Forschungs-Bericht DKV (1993), und Tillner-Roth, R.; Baehr, H.D.: An international standard formulation for the thermodynamic properties of 1,1,1,2-tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa. J. Phys. Chem. Ref. Data 23 (1994) 5,657 -729. Am Bezugszustand $\vartheta = 0$ °C auf der Siedelinie nimmt die spezifische Enthalpie den Wert h' = 200,0 kJ/kg und die spezifische Entropie den Wert s' = 1,0 kJ/kg K an.

Tabelle III: Fortsetzung

Temperatur	Druck	Spez. Volumen		Enth	alpie	Vordompfungo	Entropie		
-		der	des	der	des	veruamprungs-	der	des	
		Flüssigkeit	Dampfes	Flüssigkeit	Dampfes	entrialple	Flüssigkeit	Dampfes	
t	р	v '	v"	h'	h''	∆h _v = h" - h'	s'	s''	
°C	bar	m³/kg	m³/kg	kJ/kg	kJ/kg	kJ/kg	kJ/(kgK)	kJ/(kgK)	
0	2,9280	0,77233	69,309	200,00	398,60	198,60	1,0000	1,7271	
5	3,4966	0,78243	58,374	206,75	401,49	194,74	1,0243	1,7245	
10	4,1461	0,79305	49,442	213,58	404,32	190,74	1,0485	1,7221	
15	4,8837	0,80425	42,090	220,48	407,07	186,59	1,0724	1,7200	
20	5,7171	0,81610	35,997	227,47	409,75	182,28	1,0962	1,7180	
25	6,6538	0,82870	30,912	234,55	412,33	177,79	1,1199	1,7162	
30	7,7020	0,84213	26,642	241,72	414,82	173,10	1,1435	1,7145	
35	8,8698	0,85653	23,033	249,01	417,19	168,18	1,1670	1,7128	
40	10,166	0,87204	19,966	256,41	419,43	163,02	1,1905	1,7111	
45	11,599	0,88885	17,344	263,94	421,52	157,58	1,2139	1,7092	
50	13,179	0,90719	15,089	271,62	423,44	151,81	1,2375	1,7072	
55	14,915	0,92737	13,140	279,47	425,15	145,68	1,2611	1,7050	
60	16,818	0,94979	11,444	287,50	426,63	139,12	1,2848	1,7024	
65	18,898	0,97500	9,9604	295,76	427,82	132,06	1,3088	1,6993	
70	21,168	1,0038	8,6527	304,28	428,65	124,37	1,3332	1,6956	
75	23,641	1,0372	7,4910	313,13	429,03	115,90	1,3580	1,6909	
80	26,332	1,0773	6,4483	322,39	428,81	106,42	1,3836	1,6850	
85	29,258	1,1272	5,4990	332,22	427,76	95,536	1,4104	1,6771	
90	32,442	1,1936	4,6134	342,93	425,42	82,487	1,4390	1,6662	
95	35,912	1,2942	3,7434	355,25	420,67	65,423	1,4715	1,6492	
100	39,724	1,5357	2,6809	373,30	407,68	34,385	1,5188	1,6109	

8.8 Der kritische Punkt

Um den kritischen Punkt herum ist es möglich (Abb. gestrichelter Verlauf!), z.B. eine Flüssigkeit eine durch Folge kontinuierlicher Zustandsänderungen in den gasförmigen Zustand zu bringen, ohne den diskontinuierlichen Weg über die Phasengrenze zu gehen!

Ein kritischer Punkt für den Phasenübergang fest-flüssig ist **vermutlich** nicht existent, da kein Endpunkt für die Schmelzkurve bekannt ist. Für Gase ist auch erst seit 1869 der kritische Punkt für CO₂ bekannt. Vorher gab es die Annahme, dass z.B. O₂, N₂, H₂ permanente Gase seien, da man bis zu 3000 bar keine Verflüssigung beobachtete – aber bei T_U (T_K << T_U!) 8. Thermodynamische Eigenschaften reiner Fluide

Zusammenfassung

Zustandsgrößen können erhalten werden aus

- Zustandstafeln (Dampftafeln)
- Zustandsdiagramme

T,v- / p,T- / p,v- Diagramme *T,s- / h,s- / p,h-* Diagramme

Zustandsgleichungen

- \rightarrow Basis für Tafeln / Diagramme
- \rightarrow Computerprogramme

(allg. *p*,*v*,*T*- Fläche) (Vorteil: Prozesse auch einzeichenbar)

(für häufige Berechnungen)

(wenn wenige Daten nötig)

Grunddaten zu finden, z.B.

- VDI-Wärmeatlas
- Dubbel "Taschenbauch für den Machinenbau" (Teil D)
- Anhang vieler Thermodynamik-Bücher
- Landolt Börnstein
- IUPAC Tables
- Reid, Prausnitz, Sherwood "Properties of Gases an Liquids"