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ABSTRACT 

 

A new method to determine absolute masses of gas adsorbed on the external and internal 

surfaces of a porous solid is proposed. It consists on a combination of calorimetric and 

dielectric measurements. These lead to the enthalpy and the dielectric polarization of the 

adsorbed phase from which by purely thermodynamic calculations the absolute mass 

adsorbed can be determined without using the so-called helium volume hypothesis nor any 

other equivalent assumption. 

 

As example adsorption of subcritical carbon dioxide (CO2) on zeolite (Degussa DAY) at 

298 K and pressures up to 0,4 MPa is considered. As expected data of absolute masses 

adsorbed are always somewhat larger than the corresponding Gibbs excess masses 

calculated from both volumetric and gravimetric measurements via the helium volume of 

the zeolite. 
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INTRODUCTION 

 

The purpose of this note is to inform readers who are interested in gas-adsorption-

phenomena on highly porous solids about a new purely experimental method to measure 

absolute masses of adsorbed phases without introducing any model hypothesis on 

sorbent’s pore structure nor using the so-called helium volume hypothesis [1]. The reason 

for considering this problem is threefold: 

 

(1) Only the absolute masses adsorbed form a sound basis for development of 

thermodynamics in the sense of M. Planck, R. Clausius, L. Boltzmann and                

W. Schottky [2-4], whereas the Gibbs excess masses do not as they are differences 

between two masses referring to different phases and hence may become negative, 

especially at high sorptive gas pressures. Actually, there has been experimental 

evidence for this for many years [1, 5-8], and also similar findings in simulation 

models of gas-adsorption-systems recently [9, 10]. 

 

(2) Classical measurements of excess masses of adsorbed phases by either the 

volumetric/manometric or the gravimetric method require to introduce in addition a 

hypothesis of the void or impenetrable volume of the sorbent material as seen by 

sorptive gas molecules. As such traditionally the helium volume is chosen, i. e. the 

volume of the sorbent sample measured by exposing it to a helium atmosphere. 

Difficulties with this quantity have been discussed in the literature [1, 5-8, 11]. Here 

we only mention that the void volume of a porous material seen by the molecules of a 

gas naturally depends on the size of the molecules. Hence the helium hypothesis is 

deteriorating the more, the larger the molecules of a sorptive gas are in comparison to 

the size of the helium atoms. Also for sorptive gas mixtures, the concept of “void 
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volume” of a sorbent is becoming obsolete and probably should be replaced by a set of 

component dependent quantities related to the void volumes of each pure component 

of the mixture. 

 

(3) Numerical simulation models of gas-adsorption-systems [7, 8] always will give the 

absolute amount adsorbed on a given amount of a model sorbent. Hence it would be 

highly desirable to have truly experimental data of this quantity to validate the quality 

of the simulation model. 

 

 

MEASUREMENT METHOD 

 

The new method proposed to measure absolute adsorbed masses of pure gas-adsorption-

systems consists of a combination of 

 

(A) Measurements of the integral heat of adsorption defined as the difference between the 

enthalpy of a certain amount of mass in the adsorbed state (H
a
) and the enthalpy of the 

same amount of mass in the fluid, i. e. gaseous or liquid sorptive state (H
f
), [5, 12, 13], 

viz. 

 

 ΔH
fa

 =H
a
 - H

f
 < 0 (1) 

 

(B) Measurement of the electric dipole moment (P) of the sorptive / sorbent / sorbate 

system inside an electric capacitor and / or the macroscopic dielectric polarizability 

(ΩDE) of the system by applying either a static or an alternating electric field of a 

suitable chosen frequency ( ).  



 4 

 

For quasi-homogenous mass distribution inside the capacitor, both quantities P and 

ΩDE are related by the equation 

 

 P = ΩDE E, (2) 

 

where E is the (possibly time dependent) electric field strength [14-17]. According to 

our experimental evidence, the quasi-homogeneity assumption holds for pellet like 

sorbent materials if the ratio of a characteristic length of the capacitor (L) to that of the 

pellets, say its length or diameter (d), is of order of  10  or larger. In addition, both 

characteristic lengths have to be much smaller than the wave length of the oscillating 

electric field (λ = 2 Πc/ω) applied. In our experimental equipment, cp. Figure 1 below 

the above mentioned parameters were L = 5 cm, d = o,3 cm, (L/d)  17, 30 m < λ < 3 

km, i. e. λ >> L, λ >> d. 

 

Measurements (A) and (B) on principle can be performed simultaneously in a so-

called Impedance-Calorimeter, Figure 1, [18]. It consists on a gas expansion system 

including a gas storage vessel (SV) and an adsorption vessel (AV), both of which are 

augmented with thermocouples to measure heat flows SV AV(Q , Q )  to and from the 

vessels by gas expansion experiments. The adsorption vessel also includes an electric 

capacitor consisting of two parallel metal plates including the sorbent material, mass 

(m
S
), and being connected by electric wires to an impedance analyser outside the 

thermostat (T*=const) surrounding the vessels SV and AV, and allowing to measure 

the dielectric capacity of the sorptive / sorbent / sorbate system [18]. 
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Fig. 1: Experimental setup for calorimetric-dielectric measurements of pure gas-

adsorption-equilibria (Impedance Calorimeter). 

 

Obviously this instrument also allows to perform simple gas expansion experiments 

without measuring heat flows and electric capacities, i. e. to determine Gibbs excess 

masses via the helium volume hypothesis and also, introducing a second hypothesis 

regarding the density of the adsorbed phase, to approximately calculate absolute masses 

adsorbed on the sorbent sample [11]. Hence, results of the caloric-dielectric method can be 

compared to those of the traditional measurement method of both, the Gibbsian excess and 

the absolute adsorbed masses.  
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OUTLINE OF THE GENERAL THEORY OF CALORIMETRIC-DIELECTRIC 

MEASUREMENTS 

 

(A) Calorimetric measurements of the integral heat of adsorption. 

 

Assume a certain amount of gas (m*) to be prepared in the storage vessel (SV) at 

pressure (p*) and thermostat’s temperature (T), whereas the adsorption vessel (AV) 

including a certain amount of sorbent material (m
s
) is completely evacuated. Upon 

opening the valve connecting both vessels the sorptive gas will flow to the adsorption 

vessel where it is partly adsorbed in the sorbent (m
s
) thereby releasing the heat of 

adsorption (QAV) which by heat transfer and (possibly) thermal convection is 

transported to the thermostat fluid. Also some heat or thermal energy (QSV) may be 

exchanged between the thermostat fluid and the gas remaining in the storage vessel 

(SV) at a somewhat different temperature (TSV (t) ≠ T) due to the rapid and therefore 

nearly adiabatic expansion process of the gas. The energy balances of the gas 

exchange process read for the two vessels: 

 

Storage vessel (SV): 

 

 U
f
 (p*, T, m*) + QSV -

f
SVm* m

f f f

SV

0

h dm U (p,T, m ).  
 

(3a) 
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Adsorption vessel (AV): 

 

 U
s
 (p = 0, T, m

s
) + QAV + 

f
SVm* m

f

0

h dm  

= U
s
 (p, T, m

s
) + U

f
 (p, T, f

AVm ) + H
a
 (p, T, m

a
). 

(3b) 

 

Here the mass balance 

 f f a

SV AVm* m m m  (4) 

 

has been used with f f

SV AV(m ), (m )  being the masses included in the gaseous phases in 

the storage vessel (SV) and adsorption vessel (AV) respectively and (m
a
) being the 

absolute amount of mass adsorbed on the sorbent’s mass (m
s
) in AV. Also U

f
 indicates 

in (3a, b) the internal energy of the sorptive gas, h
f
 its specific enthalpy in flowing 

from VS to AS –the kinetic energy being assumed to be small enough to be neglected-, 

U
s
 is the internal energy of the solid sorbent and H

a
 = U

a
 + Π A

a
 the enthalpy of the 

sorbate, cp. also the list of symbols at the end of the article. 

 

From equations (3, 4) two different expressions for the integral heat of adsorption (1) 

can be deduced assuming only that the sorbent is “thermodynamically inert”, i. e. 

terms U
s
 in (3b) cancel: 

 

 (3a, b): fa f f f a

SV AVH Q Q U (p*,T,m*) U (p,T,m*) pv (p,T)m ,  (5a) 

 (3b): 

f
SVm* m

fa f f f f a

AV SV

0

H Q h dm U (p,T,m* m ) pv (p,T)m  

 

(5b) 
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We now restrict to ideal gas adsorptives and to slow i. e. nearly isothermal gas transfer 

processes between SV and AV. This basically is done to simplify numerical 

calculations but not for principle reasons. Then we get from (5b) 

 

 fa f f

AV AVH Q pv m .  (6) 

 

with v
f
 (p, T) being the specific volume of the sorptive gas at the equilibrium pressure 

(p) and bath temperature (T). Measured numerical values of the heat (QAV) and rough 

approximations of f

AV(m )  have shown that the second term in eq. (6) often is very 

small compared to the first one, especially at low pressures (p). Hence within this 

approximation we get from (6) the simple result for the integral enthalpy of adsorption 

 

 ΔH
fa

 = QAV (7) 

 

which herewith is an experimentally measurable quantity. At high pressures, i. e. 

f

cp O(p )  with f

cp  indicating the critical pressure of the adsorptive gas, the last 

assumption does not hold and one should use eq. (6) instead of eq. (7). Together with 

the mass balance eq. (4), eq. (6) provides still an implicit relation for determining the 

unknown mass adsorbed (m
a
). 

 

As the integral heat of adsorption (1) clearly is an extensive quantity, it also can be 

written as 

 

 ΔH
fa

 = Δh m
a
, (8) 
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with 

 

 Δh = Δh (p, T, B) (9) 

 

being the (integral mean) of the specific enthalpy of adsorption which in thermodynamic 

terms is an intensive quantity of state of the sorbate phase. The symbol “B” in eq. (6a) 

indicates a set of constants, characteristic for the caloric equation of state of the adsorbate 

which has to be determined by measurements, cp. example given in the next section. 

 

 

(B) Measurement of the macroscopic dielectric polarizability of the sorbate phase. 

 

The dielectric polarizability (ΩDE) of a material system defined in eq. (2) is a 

phenomenological measure describing how easily the material can be polarized, i. e. 

electric dipoles in it can be generated by applying an electric field.
*
 For weak fields        

(E < 100 V/m), according to P. Debye and I. Langmuir, the polarizability of a system 

consisting on more then one quasi-homogenous phases simply is the sum of the 

polarizabilities of all phases [14-17]. Hence we have 

 

 ΩDE = Ω
s
DE + Ω

f
DE Ω

a
DE. (10) 

 

Here the symbols Ω
i
DE , i = s, f, a, indicate the macroscopic polarizability of all molecules 

in phase (i) inside the capacitor.  

                                                 
*
 We do not consider materials with permanent electric dipole moments – so-called electrets-, 

i. e. we assume that for E = 0, the electric dipole moment of the sorption system also vanishes, 

P = 0, cp. eq. (2). 
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From eq. (10) we have 

 

 Ω
a
DE  = ΩDE – (Ω

s
DE + Ω

f
DE). (11) 

 

As for most gases at low density and high temperature the polarizability is very small due 

to the thermal motion of its (nearly free) molecules, in eq. (11)   Ω
f
DE can be neglected 

compared to Ω
s
DE, i. e. for near ideal gas sorptives we have 

 

 │Ω
f
DE│ << │Ω

s
DE│. (12) 

 

Hence we get from (11, 12) 

 

 Ω
a
DE = ΩDE – Ω

s
DE. (13) 

 

According to P. Debye [14] the polarizability ΩDE of the sorption system is related to its 

(relative) dielectric constant (ε) by 

 

 ΩDE = 0 c

1
3 V .

2
 

(14) 

 

Here   ε0 = 8,859.10
-12

 As/Vm   is the dielectric constant of the vacuum in SI-units and Vc 

is the volume of the capacitor. Likewise we have for the polarizability of the sorbent 

material in vacuum 
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 Ω
s
DE = s

0 c

s

1
3 V ,

2
 

(15) 

 

where (εs) is the (relative) dielectric constant of the sorbent material in vacuum inside the 

capacitor. 

 

Inserting expressions (14), (15) into eq. (13) we get for the polarizability of the adsorbed 

phase 

 

 Ω
a
DE = s

0 c

s

11
3 V ( ),

2 2
 

(16) 

 

which consequently can be calculated from measured values of ε and εs. 

 

It should be noted that Ω
a
DE according to its definition by eq. (2), (10) and prerequisites 

above is an extensive quantity, cp. also eq. (16). Hence it can be written as 

 

 Ω
a
DE = α

a
m

a
 (17) 

 

where m
a
 is the total mass of the adsorbed phase and 

 

 α
a
 = α

a
 (p, T, A) (17a) 

 

is its specific dielectric polarizability which in thermodynamics terms is an intensive 

quantity of state of the sorbate phase. The symbol (A) in this dielectric equation of state of 

the sorbed phase indicates a set of constants. The numerical values of these constants have 
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to be determined by dielectric measurements and correlation of the experimental data to 

any analytic function for α
a
 chosen in (17a). 

 

 

(C) Calculation of adsorbate’s absolute mass (m
a
). 

 

The caloric and the dielectric EOSs of the sorbate phase, eqs. (9), (17a) formally can be 

combined by solving – for example – (17a) for the pressure (p) to give 

 

 p = p (α
a
, T, A) (17b) 

 

and inserting this in eq. (9). This leads to the relation 

 

 Δh = Δh(α
a
, T ; A, B). (18) 

 

 

Inserting eqs. (8) and (17) into (18) we get 

 

 
fa a

DE

a a

H
h( ,T;A,B)

m m
 

(19) 

 

or likewise in view of eq. (7) 

 
a

AV DE

a a

Q
h( ,T;A,B)

m m
 

(19a) 
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Here the heat (QAV) and the polarizability of the adsorbed phase a

DE( )  are measurable,  

i. e. known quantities. Hence, (19a) is an algebraic equation for the absolute mass 

adsorbed (m
a
) which formally can be represented as 

 
a a a

AV, DEm m (Q ,T;A,B)  (20) 

 

That is, ma can be calculated from this equation once the characteristic parameters (A, B) 

of the equations of state (9), (17a) are known. If instead of the approximate equation (7) 

the exact energy equation (6) is used, we get from (4), (6) and (19) 

 

 
* f a

fAV SV DE

a a a

Q m m
[ 1] pv h( ,T;A,B)

m m m
 

(19b) 

 

This algebraic equation for (m
a
) differs from eq. (19a) by the bracketed term on its l.h.s. 

As rough estimations of this term have shown that its numerical value often is small 

compared to the first term on the l.h.s. of (19b), it has been neglected to simplify further 

algebraic treatment but not for principle reasons. That is, in the example presented in the 

next Section of the paper we will use eq. (19a) instead of eq. (19b) for determining the 

absolute mass adsorbed (m
a
). 

 

To determine numerical values of the parameters (A, B) we consider the Gaussian 

minimization procedure 

 

 
I

a 2 a a a 2

AV i DE i

i

(Q h(p,T,B)m ) ( (p,T,A)m ) Min  
(21) 

 

with (m
a
) being a function of (A, B) according to eq. (20). 
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The sum should be taken over all sets of experimental data a

AVi DEi i(Q , ,p ,T const.)  

available. Naturally, the resulting values of parameters A, B will depend on these data and 

also on the total number (I) of data sets available. However, we expect numerical values of 

A, B to tend to asymptotic limiting values as I ∞. The proof of this conjecture is left to 

cooperative mathematicians. Once parameters A, B are known from (21), the masses 

adsorbed can be calculated from eq. (20). Also the specific adsorption enthalpy (Δhi) and 

the specific polarizability αi of the adsorbed phase in state i=1…I can be calculated from 

the respective EOSs (9), (17a). A numerical example will be given in the next section. 

 

Alternatively to (21), the minimization requirement 

 

 

2
I

AV

a a
i DE i

Q h(p,T,B)
Min

(p,T,A)
 

(22) 

 

which does not include the function (20) for the (unknown) masses adsorbed, can be used. 

This can be of importance in case eq. (20) is not explicit in (m
a
), but implicit, i. e. 

including the unknown quantity (m
a
) also on its r. h. side. However, though the 

minimization principle (22) can be handled numerically much more easily than (21), it 

does not always allow to actually determine unique values of parameter sets A, B. This 

easily can be shown by simple numerical examples. Hence we recommend the reader to 

use eq. (21) to determine A, B and consider (22) only in order to get – for example – 

starting values of these parameters within an iterative numerical solution procedure of 

(21). 
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The formalism described above may be generalized in several ways. First we expect 

numerical accuracy to be increased if dielectric measurements not only at one, but at 

several frequencies are available. Also, by combining the dielectric-caloric method with 

manometric or gravimetric adsorption measurements, binary coadsorption equilibria of the 

system can be determined. Details will be given in a forthcoming paper [19]. 

 

In conclusion we would like to emphasize that using a series expansion of the caloric-

dielectric equation of state of the adsorbed phase (18), it is on principle possible to 

calculate the total amount of mass adsorbed from combined dielectric and caloric 

measurements without introducing a hypothesis regarding the void volume of the sorbent 

material. The resulting data will be the more accurate, the more data of the sorption 

enthalpy and the polarization are available and the smaller uncertainties of these data are. 

Similar methods comprising combined caloric-magnetic and/or dielectric-magnetic 

measurements can be envisaged and may be discussed in due time. 
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EXAMPLE: ADSORPTION OF CO2 ON WESSALITE (DAY-ZEOLITE) AT 298 K 

 

Combined dielectric-calorimetric measurements of the adsorption of carbon dioxide (CO2) 

on wessalite, a special type of DAY-zeolite manufactured by Degussa AG, Wolfgang, 

Germany, have been performed in our laboratory during 2000 / 2001. Experimental details 

are described in [16, 20-22]. Here we restrict to present numerical data as given in Tab. 1 

below. 

 

 

No. 

P 

hPa 

ΔH
fa 

J/g 

ΔhGE 

J/mg 

Π 
GE  

μg/mg 

1 100 -2,6 -1,83 13·10
-4 

900 

2 499 -5,3 -0,809 38·10
-4

 660 

3 1009 -8,25 -0,584 (95·10
-4

) (648) 

4 1961 -12,8 -0,430 116·10
-4

 333 

5 4003 _ -0,345 118·10
-4

 137 

  m
s
 = 1 g mGE = 1 mg   

 

 

Tab. 1: Heat of adsorption (ΔH
fa

) per unit mass of sorbens (m
s
 = 1 g ) and reduced dielectric 

polarizability ( a

DE 0 c/(3 V ) ) of CO2 on wessalite (DAY-zeolite) at T = 298 K. Also shown are 

specific values of these quantities (ΔhGE = ΔH
fa

 / mGE, GE  = Π / mGE) related to the Gibbs excess 

mass (mGE) of CO2 adsorbed, cp. Fig. 5. 
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In this table the integral heat of adsorption (ΔH
fa

 < 0) of CO2 on wessalite per mass unit of sorbent  

(m
s
 = 1 g), the specific heat of adsorption (ΔhGE = ΔH

fa
 / mGE) referred to the Gibbs excess mass of 

the adsorbed phase, the reduced dielectric polarizability ( a

DE 0 c/(3 V ) ), cp. (16, 22) and its 

specific values ( GE  = Π/ mGE) also related to the Gibbs excess mass are given for five different gas 

pressures and a temperature T = 298 K. Numerical values of the Gibbs excess masses (mGE) are 

given in Fig. 5 below. The adsorption enthalpies (ΔH
fa

, ΔhGE) are sketched in Figure 2 below. The 

(reduced) polarizabilities (Π, GE ) are displayed in Figure 3 below. This is done in order to get 

insight in what the algebraic structure of the caloric equation of state (EOS)of the adsorbate, eq. (9) 

and the dielectric EOS, eq. (17a) could be, as the quantities (ΔhGE, GE ) can be considered as “low 

pressure approximations” for their (actually needed but still unknown) counterparts (Δh = ΔH
fa

/m
a
), 

a/ m )) related to the absolute mass adsorbed (m
a
). 

 

 

   Fig. 2 

 

 

As can be seen from Figure 2 the pressure dependence of the specific enthalpy of adsorption 

phenomenologically can be represented by an EOS of the type 

 

 Δh (p, T, b, B) = Δh0 + B (T)e
– b (T) p

 (23) 

 

Here Δh0 = Δh(p = ∞, T, b, B) is chosen as the enthalpy of condensation at temperature (T) from the 

vapor to the bulk liquid phase, i. e. for CO2 we have Δh0 = -0,3455 J/mg, [23]. The parameters      

(B, b)are unknown constants which have to be determined by data correlation, i. e. by the Gauss-
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minimization procedure eq. (21) described in more detail below. The curve (23) resulting from this 

calculation is sketched in Figure 2. In comparing it to the experimental data symbols it should be 

emphasized that the line refers to the specific adsorption enthalpy (Δh = ΔH
fa

 / m
a
) related to the 

absolute mass adsorbed whereas the data prints represent values of the specific adsorption enthalpy 

related to the Gibbs excess mass (ΔhGE = ΔH
fa

 / mGE). 

 

 

   Fig. 3 

 

 

From Figure 3 we similarly deduce that the pressure dependence of the (reduced) specific 

polarizability 

 

 
a

a

0 cm 3 V
 

 

(24) 

 

with 

 
a

sDE

0 c s

11

3 V 2 2
 

 

(25) 

 

being an auxiliary quantity which may be called “reduced dielectric polarizability” of the adsorbed 

phase, phenomenologically can be represented by an equation of the type 

 

 
a(T)p

0(p,T,a,A) A(T)e .  
(26) 
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Here 0 (p ,T,a, A)  is chosen as the (reduced) specific polarizability of the sorptive gas in 

its bulk liquid state at temperature T. For CO2 at T = 298 K and the capacitor used [21, 22], we have 

0  = 108,8 μg/mg, [24]. The parameters (A, a) again are unknown constants which also have to be 

determined by data correlation, i. e. by the Gauss-minimization procedure eq. (21) as indicated 

below. The curve (26) resulting from this is already sketched in Figure 3. In comparing it to the 

experimental data symbols it should again be taken into account that the line represents the optimal 

fit of the reduced specific polarization (
a/ m ) related to the absolute mass adsorbed whereas 

the data points represent values of the reduced specific polarizability ( GE GE/ m ) related to the 

Gibbs excess mass. 

 

From the caloric EOS (23) and the dielectric EOS (26) the caloric-dielectric EOS of the adsorbed 

CO2 can be derived by eliminating the pressure (p) from these equations: 

 

 
b / a0

0h h B( )
A

 

(27) 

 

This curve is sketched in Figure 4 using for the parameters their “optimized values” given below, 

cp. (30). In comparing this curve with the data points depicted in Fig. 4 it should again be taken into 

account, that the former is related to the absolute masses adsorbed ( h h( )) , whereas the later 

are referred to the Gibbs excess masses fa
GEGE GE GE( h H / m , / m ) . As can be seen from 

Fig. 4, the CO2 adsorbed realizes in the low pressure – or Henry region large specific values of the 

adsorption enthalpy which correspond to large values of the specific polarizability. Contrary to this 

for increasing pressures, i. e. approaching the liquid like state of saturation, the enthalpy and 

polarizability are decreasing to near their liquid state corresponding values. 
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   Fig. 4 

 

 

Inserting now in eq. (27) the extensivity relations (8) and (24) we get 

 

 
fa

a

a b/a
00

H
m

h B( ( (T / m ) )A)

 

 

(28) 

 

This is an implicit algebraic equation for the absolute mass adsorbed (m
a
) once the parameters a, A, 

b, B have been determined numerically. To achieve this, we consider the Gaussian mean deviation 

minimization principle eq. (21), for correlating the data given in Tab. 1. Using the reduced 

polarizability (Π), eq. (25) instead of a

DE( )  it reads: 

 

2 24 5
fa a f a f

i 1 i 1i i

H h(b,B)m (a,A,b,B, H , ) (a,A)m (a,A,b,B, H , ) Min  
(29) 

 

Here for Δh and  eqs. (23) and (26) have to be introduced whereas the function m
a
 = m

a
(a, A, 

b…) is defined by eq. (28). For numerical solution of (28, 29) one may start by using for m
a
 in (29) 

the (volumetrically or gravimetrically measured) Gibbs excess mass (mGE) and determine 

approximate values of parameters (a, A, b, B). Inserting these in eq. (28), new values of (A, a, B, b) 

can be calculated which iteratively may be used in (29). The result of this iteration procedure is 
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 a = 9,0867·10
-4

 (hPa)
-1

 

 A = 866,79 
g

mg
        (30) 

 b = 29,17·10
-4

 (hPa)
-1 

 B = - 1,9913 J/mg 

 

Using these parameters in eq. (28) and experimental data as given in Tab. 1, the absolute masses of 

CO2 adsorbed (m
a
) can be calculated. Numerical results are given together with the Gibbs excess 

masses determined volumetrically (mGEV) and gravimetrically (mGEG) in Figure 5 below. 

 

 

   Figure 5 

 

 

The absolute masses are always somewhat larger than the Gibbs excess masses as it should be 

according to the underlying physical concepts. However, we have to emphasize that the results 

presented only are preliminary, as the data base is fairly small and much more data would be needed 

to show the absolute – and the Gibbs excess adsorption isotherm over a considerable range of 

pressure in order to finally answer the question in what range of pressure the later is still a good 

approximation of the former. Experiments in a new type of adsorption calorimeter are presently 

performed at IFT and we hope to be able to report on them in due time. 

 

Differences in the volumetrically and gravimetrically measured Gibbs excess masses depicted in 

Fig. 5 are partly due to different activation procedures of the zeolite samples used in the 

experiments. This of course should be avoided, but as a matter of fact happened in our experiments 

and therefore is brought to the reader’s attention. 
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In conclusion we want to emphasize that on principle it is possible to measure the absolute amount 

of a sorptive gas adsorbed on porous solids without using the so-called helium volume 

approximation by combined dielectric and calorimetric measurements. However, experiments are 

cumbersome and time consuming and probably only will be needed for calibration or 

standardization purposes or for processes operating at high pressures. It also would be desirable to 

compare results of measurements of absolute masses adsorbed with those of numerical simulation 

models to get new inside in both the analytical model used and the experimental technique proposed 

in this paper. 
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LIST OF SYMBOLS 

 

 

Symbol SI-Unit Name 

A (various) set of characteristic constants in 

equation of state (17a) for the 

specific dielectric polarizability 

of the adsorbed phase 

A
a
 m

D 
aerial extension parameter of 

adsorbed phase of fractal 

dimension (1 ≤ D ≤ 3) 

B (various) set of characteristic constants in 

the caloric equation of state (9) 

for the (integral mean) specific 

heat of adsorption 

1 ≤ D ≤ 3 1 fractal exponent of adsorbed 

phase 

E V/m electric field strength 

H
a
 = U

a
 + ΠA

a
 J enthalpy of mass m

a
 adsorbed 

H
f
 J enthalpy of mass m

f
 of fluid,    

i. e. gaseous or liquid sorptive 

ΔH
fa

 = H
a
 – H

f
 J integral heat of adsorption of a 

gaseous sorptive on a certain 

mass (
s
) of sorbent 

h
f
 J/g specific enthalpy of sorptive gas 
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Δh = ΔH
fa

 / m
a
 J/g specific enthalpy of adsorption 

related to the absolute mass 

adsorbed (m
a
) 

ΔhGE = ΔH
fa

 / mGE J/g specific enthalpy of adsorption 

related to the Gibbs excess mass 

adsorbed (mGE) 

m* g mass of sorptive gas prepared in 

the storage vessel (SV) prior to 

expansion 

m
a
 g absolute mass adsorbed on the 

surface (s) of (m
s
) 

f

AVm  g mass of sorptive gas included in 

the adsorption vessel after 

equilibration 

f

SVm  g mass of sorptive gas included in 

the storage vessel after 

equilibration 

m
s
 g mass of sorbent prepared in the 

adsorption vessel (AV) 

P Asm electric dipole moment of a 

material system 

p Pa pressure of sorptive gas 
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QAV J heat exchange between the 

adsorption vessel (AV) and the 

heat bath in the impedance 

calorimeter, Figure 1 

QSV J heat exchange between the 

storage vessel (SV) and the heat 

bath in the impedance 

calorimeter, Figure 1 

T K thermostat temperature 

U
f
 J internal energy of sorptive gas 

U
s
 J internal energy of solid sorbent 

material 

Vc m
3 

volume of the electric capacitor 

v
f
 m

3
/kg specific volume of sorptive gas 

α
a
 = a a

DE / m  Asm
2
 / Vg specific dielectric polarizability 

of the adsorbed phase 

a

a 0 c/ m /3 V  
g/mg reduced specific dielectric 

polarizability related to the 

absolute mass adsorbed (m
a
) 

GE GE/ m  
g/mg reduced specific dielectric 

polarizability related to the 

Gibbs excess mass of an 

adsorbed phase (mGE) 

ε0 = 8,859·10
-12 

As/Vm dielectric constant of the 

vacuum in SI-units 
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ε 1 relative dielectric constant of a 

material system; in eq. (14) ε is 

related to the sorbent and 

sorbate phase inside an 

electrical capacitor 

εs 1 relative dielectric constant of 

the sorbent material in vacuum 

λ m wavelength of an oscillating 

electric field 

a

DE 0 c/(3 V )  1 reduced dielectric polarizability 

of an adsorbed phase 

π DJ m  spreading pressure of adsorbed 

phase of fractal dimension       

(1 ≤ D ≤ 3) 

ΩDE = P/E Asm/(V/m) macroscopic dielectric 

polarizability of a material 

a

DE  Asm/(V/m) macroscopic dielectric 

polarizability of the adsorbed 

phase 

f

DE  Asm/(V/m) macroscopic dielectric 

polarizability of the gaseous 

sorptive 

s

DE  Asm/(V/m) macroscopic dielectric 

polarizability of the solid 

sorbent material 
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FIGURES’ CAPTIONS 

 

Fig. 1: Experimental setup for calorimetric-dielectric measurements of pure gas-adsorption-

equilibria (Impedance-Calorimeter). 

 

Fig. 2: Enthalpy (ΔH
fa

) and Gibbs excess specific enthalpy (ΔhGE = ΔH
fa

 / mGE) data of CO2 

adsorbed on DAY-zeolite at T = 298 K. The curve refers to the specific enthalpy of the 

absolute mass adsorbed, i. e. Δh = ΔH
fa

 / am , cp. eqs. (23, 30). 

 

Fig. 3 Reduced dielectric polarizability (Π) and Gibbs excess specific polarizability 

( GE GE/ m ) data of CO2 on DAY-zeolite at T = 298 K. The curve refers to the specific 

polarizability of the absolute mass adsorbed, i. e.  = Π / am , cp. eqs. (26, 30). 

 

Fig. 4: Gibbs excess specific enthalpy (ΔhGE = ΔH
fa

 / mGE) – reduced Gibbs excess specific 

polarizability ( GE GE/ m ) diagram of CO2 on DAY-zeolite at T = 298 K. The curve 

refers to Δh = Δh ( ) as given by eq. (27) with “optimised parameters”, (30). 

 

Fig. 5: Absolute masses (m
a
) and Gibbs excess masses measured volumetrically and gravimetrically 

(mGEV, mGEG) of CO2 adsorbed on wessalite (DAY-zeolite) at 298 K. 


