Thermodynamics of Irreversible Processes (1)

Assignments

1. Elemental Applications of the Laws of Thermodynamics

1A Heat Transfer Experiment (J. B. Fourier)

Apply the $1^{\text {st }}$ and $2^{\text {nd }}$ Law of Thermodynamics to the heat transfer systems as shown below. Give proof that a process during which the temperature difference $\left|T_{2}-T_{1}\right|$ between the two systems would increase is not possible according to the $2^{\text {nd }}$ Law (2).

$$
\begin{array}{ll}
\text { Initial temperatures }(\mathrm{t}=0) & : \mathrm{Z}_{0}\left(\mathrm{~T}_{10}, \mathrm{~T}_{20}\right) \\
\text { Final temperatures }(\mathrm{t} \rightarrow \infty) & : \mathrm{Z}\left(\mathrm{~T}_{1}=\mathrm{T}_{2}=\mathrm{T}\right) \\
\text { Heat capacities } & : \mathrm{m}_{1} \mathrm{c}_{1}=\mathrm{m}_{2} \mathrm{c}_{2} \\
1^{\text {st }} \text { Law } & : \mathrm{U}_{01}+\mathrm{U}_{02}=\mathrm{U}_{1}+\mathrm{U}_{2} \\
\text { CEOS } & : \mathrm{U}_{\mathrm{i}}=\mathrm{U}_{0 \mathrm{i}}+\mathrm{c}_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}}\left(\mathrm{~T}-\mathrm{T}_{0}\right), \mathrm{i}=1,2 \\
(0,1) \rightarrow & \mathrm{T}=\frac{1}{2}\left(\mathrm{~T}_{01}+\mathrm{T}_{02}\right) \\
& : \mathrm{S}_{\mathrm{i}}=\mathrm{S}_{\mathrm{i} 0}+\mathrm{c}_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{\mathrm{i}}}\right) \\
2^{\text {nd }} \text { Law (1) } & : \mathrm{S}_{1}+\mathrm{S}_{2}>\mathrm{S}_{10}+\mathrm{S}_{20} \\
2^{\text {nd }} \text { Law (2) } & \frac{1}{2}\left(\mathrm{~T}_{01}+\mathrm{T}_{02}\right)>\sqrt{\mathrm{T}_{01} \mathrm{~T}_{02}} \\
(3,4) \rightarrow &
\end{array}
$$

$2^{\text {nd }}$ Law \rightarrow Geometric Inequality

Generalization
(4) (5) $\quad \mathrm{T}_{1} \mathrm{~T}_{2}>\mathrm{T}_{10} \mathrm{~T}_{20}$
$\rightarrow \quad$ Process $\mathrm{Z}_{0} \rightarrow \overline{\mathrm{Z}}$ not possible

1B Gas Expansion Experiment (Gay-Lussac)
Apply the $1^{\text {st }}$ and $2^{\text {nd }}$ Law of Thermodynamics to the gas expansion system shown below. Give proof that a gas contraction process during which the volume of the gas is decreasing is not possible according to the $2^{\text {nd }}$ Law (2).

Initial state $(t=0) \quad: Z_{0}\left(T_{0}, p_{0}, V_{0}\right)$
Final state $(\mathrm{t} \rightarrow \infty): \mathrm{Z}\left(\mathrm{T}, \mathrm{p}, \mathrm{V}_{0}+\mathrm{V}\right), \mathrm{V} \gtrless 0$

Ideal gas $\quad: \mathrm{T}_{0}=\mathrm{T}$
$1^{\text {st }}$ Law $\quad: \mathrm{U}_{0}=\mathrm{U}$
CEOS $\quad: \mathrm{U}=\mathrm{U}_{0}+\mathrm{mc}_{\mathrm{v}}\left(\mathrm{T}-\mathrm{T}_{0}\right)$
$2^{\text {nd }}$ Law (1) $\quad: \mathrm{S}=\mathrm{S}_{0}+\mathrm{mc}_{\mathrm{v}}\left(\ln \left(\frac{\mathrm{T}}{\mathrm{T}_{0}}\right)+\frac{\mathrm{R}}{\mathrm{M}} \ln \left(\frac{\mathrm{V}+\mathrm{V}_{0}}{\mathrm{~V}_{0}}\right)\right)$
$2^{\text {nd }}$ Law (2) $: S>S_{0}$
(8), (12)
$\mathrm{V}>0$
... gas expansion
Contraction processes $(\mathrm{V}<0)$ are not possible according to (1.12).

2. Adiabatic Flow of Ideal Gases

Natural gas (methane, CH_{4}) is leaving a cavern in state $\mathrm{Z}_{0}\left(\mathrm{p}_{0}=100 \mathrm{bar}, \mathrm{T}_{0}=300 \mathrm{~K}\right.$, $\mathrm{w}_{0} \approx 0, \kappa=1,3, \mathrm{M}=16 \mathrm{~g} / \mathrm{mol}$) to flow (stationary) through a gas pipeline with constant diameter $\mathrm{d}=2 \mathrm{~m}$. The gas leaves the pipeline in state $\mathrm{Z}(\mathrm{p}=50 \mathrm{bar}, \mathrm{T}, \mathrm{w})$. The gas flow is irreversible with (measured) flow coefficient $\mathrm{LR}=78,15 \mathrm{t} / \mathrm{s}$.

Calculate the temperature (T), the density (ρ), the velocity (w) and the mass flow (\dot{m}) of the gas in state (Z) for both, the ideal reversible flow and the irreversible flow.

Methane $\quad: \mathrm{M}=16 \mathrm{~g} / \mathrm{mol}, \kappa=1,3, \mathrm{~T}_{\mathrm{s}}(1 \mathrm{bar})=-161^{\circ} \mathrm{C}$
Initial state $\quad: \mathrm{Z}_{0}\left(\mathrm{p}_{0}=100 \mathrm{bar}, \mathrm{T}_{0}=300 \mathrm{~K}, \dot{\mathrm{~m}}, \mathrm{~A}_{0} \rightarrow \infty, \mathrm{w}_{0}=0\right)$
Final state $\quad: \mathrm{Z}\left(\mathrm{p}=50\right.$ bar, $\left.\mathrm{T}=?, \mathrm{~A}=\mathrm{d} \pi / 4=3,14 \mathrm{~m}^{2}, \mathrm{w}=?\right)$
Mass flow $\quad \dot{\mathrm{m}}=\mathrm{A} w \rho=$ const

THEOS $\quad \rho=\frac{\mathrm{p}}{\mathrm{RT}}, \quad \mathrm{R}=\mathbb{R} / \mathrm{M}$

CEOS

$$
\begin{align*}
& \mathrm{h}=\mathrm{h}_{0}+\mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}-\mathrm{T}_{0}\right) \tag{2.3}\\
& \mathrm{c}_{\mathrm{p}}=\frac{\kappa}{\kappa-1} \mathrm{R} \tag{2.4}
\end{align*}
$$

Energy balance for adiabatic flow:

$$
\begin{align*}
& \mathrm{h}_{0}+\frac{1}{2} \mathrm{w}_{0}^{2}=\mathrm{h}+\frac{1}{2} \mathrm{w}^{2} \tag{2.5}\\
& \mathrm{w}_{0}=0 \\
& \mathrm{w}^{2}=2 \frac{\kappa}{\kappa-1} \mathrm{R}\left(\mathrm{~T}_{0}-\mathrm{T}\right) \tag{2.6}
\end{align*}
$$

Reversible Flow Approximation (RFA):

$$
\begin{equation*}
\mathrm{pT}^{\frac{\kappa}{1-\kappa}}=\mathrm{p}_{0} \mathrm{~T}_{0}^{\frac{\kappa}{1-\kappa}} \tag{2.7}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{rev}}=\mathrm{T}_{0}\left(\frac{\mathrm{p}}{\mathrm{p}_{0}}\right)^{\frac{\mathrm{k}-1}{\kappa}} \\
& \mathrm{~T}_{\mathrm{rev}}=255,6 \mathrm{~K}=-17,5^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{equation*}
\rho_{\mathrm{rev}}=37,61 \mathrm{~kg} / \mathrm{m}^{3} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{w}_{\mathrm{rev}}=447,3 \mathrm{~m} / \mathrm{s}=1.610,3 \mathrm{~km} / \mathrm{h} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{rev}}=3,14 \mathrm{~m}^{2} \cdot 37,6\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \cdot 447,3(\mathrm{~m} / \mathrm{s})=52,8 \mathrm{t} / \mathrm{s} \tag{1}
\end{equation*}
$$

Irreversible Flow:
Process equation, $2^{\text {nd }}$ Law (2):

$$
\begin{align*}
& \dot{\mathrm{m}}=\mathrm{L}\left(\mathrm{~s}-\mathrm{s}_{0}\right) \geq 0 \tag{2.8}\\
& \mathrm{LR}=78,15 \mathrm{t} / \mathrm{s} \tag{2.8a}
\end{align*}
$$

Ideal gas:

$$
\begin{equation*}
\mathrm{s}-\mathrm{s}_{0}=\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{0}}\right)-\mathrm{R} \ln \left(\frac{\mathrm{p}}{\mathrm{p}_{0}}\right) \tag{2.9}
\end{equation*}
$$

$(8,9) \quad \mathrm{T}=\mathrm{T}_{0}\left(\frac{\mathrm{p}}{\mathrm{p}_{0}} \mathrm{e}^{\frac{\dot{\mathrm{m}}}{\mathrm{LR}}}\right)^{\frac{\kappa-1}{\kappa}}$
$(6,1,2) \quad \dot{\mathrm{m}}^{2}=2 \frac{\kappa}{\kappa-1}\left(\mathrm{~T}_{0}-\mathrm{T}\right)\left(\frac{\mathrm{Ap}}{\mathrm{RT}}\right)^{2}$

Numerical iteration
$(10,11,8 \mathrm{a}) \quad \mathrm{T}=\Phi(\mathrm{T})$
$\mathrm{T}_{\mathrm{n}+1}=\Phi\left(\mathrm{T}_{\mathrm{n}}\right)$
$\mathrm{T}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{T}_{\mathrm{n}}, \quad \mathrm{T}_{0}=\mathrm{T}_{\mathrm{rev}}=255,6 \mathrm{~K}$
$\rightarrow \quad \mathrm{T}=280,7 \mathrm{~K}=7,6^{\circ} \mathrm{C}$
(2) $\quad \rho_{\text {irr }}=34,24 \mathrm{~kg} / \mathrm{m}^{3}$
(6)

$$
\begin{equation*}
\mathrm{w}_{\mathrm{irr}}=294,7 \mathrm{~m} / \mathrm{s}=1.060 \mathrm{~km} / \mathrm{h} \tag{1}
\end{equation*}
$$

$\dot{\mathrm{m}}_{\text {irr }}=A \mathrm{w}_{\text {irr }} \rho_{\text {irr }}=3,14 \mathrm{~m}^{2} \cdot 34,24\left(\mathrm{~kg} / \mathrm{m}^{3}\right) \cdot 294,7(\mathrm{~m} / \mathrm{s})=31,69 \mathrm{t} / \mathrm{s}$
$\dot{\mathrm{m}}_{\mathrm{irr}}<\dot{\mathrm{m}}_{\mathrm{rev}}$!

3. Air-Air Heat Pump Loss of Energy

A heat pump for air conditioning purposes is using ambient air at $\mathrm{T}_{0}=10^{\circ} \mathrm{C}, \mathrm{p}_{0}=1 \mathrm{~atm}$. Part of the incoming air, namely $\dot{\mathrm{m}}_{\mathrm{H}}=1,2 \mathrm{~kg} / \mathrm{s}$, is heated up at constant pressure $\left(\mathrm{p}_{0}\right)$ to $\mathrm{T}_{\mathrm{H}}=60^{\circ} \mathrm{C}$. Another part ($\dot{\mathrm{m}}_{\mathrm{C}}$) is cooled down to $\mathrm{T}_{\mathrm{C}}=3^{\circ} \mathrm{C}$. The isobaric specific heat of the air is $\mathrm{c}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
A. The power supply of the heat pump is $\dot{\mathrm{W}}_{\mathrm{t}}=10 \mathrm{~kW}$. Calculate the mass flow $\left(\dot{\mathrm{m}}_{\mathrm{C}}\right)$ serving as heat source for the heat pump.
B. What is the loss of exergy (per unit of time) $\left(\mathrm{P}_{\mathrm{ex}}\right)$ during the heat pump process?
C. Consider the special case of a reversible heat pump. Calculate the mass flow ($\dot{\mathrm{m}}_{\mathrm{C} \text { rev }}$) and the power ($\dot{\mathrm{W}}_{\mathrm{trev}}$) needed to provide the air flow $\dot{\mathrm{m}}_{\mathrm{H}}=1,2 \mathrm{~kg} / \mathrm{s}$ at $\mathrm{T}_{\mathrm{H}}=60^{\circ} \mathrm{C}$.
D. Consider the special case $\dot{\mathrm{m}}_{\mathrm{C}}=0$. What power supply $\left(\dot{\mathrm{W}}_{\mathrm{t} 0}\right)$ is needed in this case? How large is the loss of exergy $\left(\mathrm{P}_{\mathrm{ex}}\right)$ in this case? How does one call a heating system of this type?

Balance equation(s) for stationary process(es):
A. Energy balance

$$
\begin{array}{ll}
\Sigma: & \dot{\mathrm{U}}=\left(\dot{\mathrm{m}}_{\mathrm{H}}+\dot{\mathrm{m}}_{\mathrm{C}}\right) \mathrm{h}_{0}-\dot{\mathrm{m}}_{\mathrm{H}} \mathrm{~h}_{\mathrm{H}}-\dot{\mathrm{m}}_{\mathrm{C}} \mathrm{~h}_{\mathrm{C}}+\dot{\mathrm{W}}_{\mathrm{t}}=0 \\
\rightarrow & \dot{\mathrm{~m}}_{\mathrm{C}}=\frac{\dot{\mathrm{m}}_{\mathrm{H}}\left(\mathrm{~h}_{\mathrm{H}}-\mathrm{h}_{0}\right)-\dot{\mathrm{W}}_{\mathrm{t}}}{\mathrm{~h}_{0}-\mathrm{h}_{\mathrm{C}}} \tag{3.2}
\end{array}
$$

Air, CEOS

$$
\begin{equation*}
\mathrm{h}_{\mathrm{i}}=\mathrm{h}_{0}+\mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{0}\right), \quad \mathrm{i}=\mathrm{C}, \mathrm{H} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\mathrm{m}}_{\mathrm{C}}=\frac{\dot{\mathrm{m}}_{\mathrm{H}} \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{0}\right)-\dot{\mathrm{W}}_{\mathrm{t}}}{\mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{0}-\mathrm{T}_{\mathrm{C}}\right)} \tag{2,3}
\end{equation*}
$$

$\rightarrow \quad \dot{\mathrm{m}}_{\mathrm{C}}=7,15 \mathrm{~kg} / \mathrm{s}$
B. Exergy balance
$\Sigma: \quad \quad \dot{\mathrm{E}}_{\mathrm{X}}=\mathrm{J}_{\mathrm{E}}+\mathrm{P}_{\mathrm{E}}=0$
$\mathrm{J}_{\mathrm{E}}=\dot{\mathrm{m}}_{\mathrm{C}}\left(\mathrm{e}_{0}-\mathrm{e}_{\mathrm{C}}\right)+\dot{\mathrm{m}}_{\mathrm{H}}\left(\mathrm{e}_{0}-\mathrm{e}_{\mathrm{H}}\right)+\dot{\mathrm{W}}_{\mathrm{t}}$

$$
\begin{align*}
& \mathrm{P}_{\mathrm{E}}=-\mathrm{J}_{\mathrm{E}}=-\mathrm{T}_{0} \mathrm{P}_{\mathrm{S}}<0 \tag{5}\\
& \mathrm{e}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}}-\mathrm{h}_{0}-\mathrm{T}_{0}\left(\mathrm{~s}_{\mathrm{i}}-\mathrm{s}_{0}\right), \quad \mathrm{i}=\mathrm{H}, \mathrm{C}
\end{align*}
$$

(5b, 5a, 1)

$$
\begin{equation*}
\mathrm{P}_{\mathrm{E}}=\mathrm{T}_{0}\left(\dot{\mathrm{~m}}_{\mathrm{H}}\left(\mathrm{~s}_{\mathrm{H}}-\mathrm{s}_{0}\right)+\dot{\mathrm{m}}_{\mathrm{C}}\left(\mathrm{~s}_{\mathrm{C}}-\mathrm{s}_{0}\right)\right) \tag{3.5c}
\end{equation*}
$$

Ideal gas $\left(p_{i}=p_{0}, i=C, H\right)$

$$
\begin{equation*}
\mathrm{s}_{\mathrm{i}}-\mathrm{s}_{0}=\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{\mathrm{i}}}{\mathrm{~T}_{0}}\right) \tag{3.7}
\end{equation*}
$$

$(6,7)$

$$
\mathrm{P}_{\mathrm{E}}=4,6 \mathrm{~kW}
$$

C. Reversible Process:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{S}}=0 \tag{3.8}
\end{equation*}
$$

(5b)

$$
\begin{equation*}
\mathrm{P}_{\mathrm{E}}=0 \tag{3.9}
\end{equation*}
$$

(6)

$$
\begin{align*}
\dot{\mathrm{m}}_{\mathrm{Crev}} & =\dot{\mathrm{m}}_{\mathrm{H}} \frac{\mathrm{~s}_{\mathrm{H}}-\mathrm{s}_{0}}{\mathrm{~s}_{0}-\mathrm{s}_{\mathrm{C}}} \tag{3.10}\\
& =\frac{\ln \left(\mathrm{T}_{\mathrm{H}} / \mathrm{T}_{0}\right)}{\ln \left(\mathrm{T}_{0} / \mathrm{T}_{\mathrm{C}}\right)} \tag{3.11}
\end{align*}
$$

$$
\dot{\mathrm{m}}_{\text {C rev }}=7,80 \mathrm{~kg} / \mathrm{s}
$$

(1)

$$
\dot{\mathrm{W}}_{\mathrm{trev}}=\dot{\mathrm{m}}_{\mathrm{H}} \mathrm{~h}_{\mathrm{H}}+\dot{\mathrm{m}}_{\mathrm{Crev}} \mathrm{~h}_{\mathrm{C}}-\left(\dot{\mathrm{m}}_{\mathrm{H}}+\dot{\mathrm{m}}_{\mathrm{Crev}}\right) \mathrm{h}_{0}=5,45 \mathrm{~kW}
$$

D. Electric Heater $\quad\left(\dot{\mathrm{m}}_{\mathrm{C}}=0\right)$

$$
\begin{equation*}
\mathrm{W}_{\mathrm{t}}^{*}=\dot{\mathrm{m}}_{\mathrm{H}}\left(\mathrm{~h}_{\mathrm{H}}-\mathrm{h}_{0}\right)=\dot{\mathrm{m}}_{\mathrm{H}} \mathrm{c}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{0}\right)=60,24 \mathrm{~kW} \tag{3.12}
\end{equation*}
$$

(6), (12)

$$
\begin{align*}
\mathrm{P}_{\mathrm{E}}^{*} & =\dot{\mathrm{m}}_{\mathrm{H}} \mathrm{~T}_{0}\left(\mathrm{~s}_{\mathrm{H}}-\mathrm{s}_{0}\right) \tag{1}\\
& =\dot{\mathrm{m}}_{\mathrm{H}} \mathrm{~T}_{0} \mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{\mathrm{H}}}{\mathrm{~T}_{0}}\right) \tag{7}\\
& =55,48 \mathrm{~kW}
\end{align*}
$$

