Evolution of Heat during Bacterial growth Processes

J.U.Keller Inst. Fluid-and Thermodynamics University of Siegen, 57068 Siegen, Germany E-mail: keller@ift.maschinenbau.uni-siegen.de

1.Bacteria

- 2.Phenomenology of Bacterial Heat Production Kleiber's Law, Temperature Dependence Autometabolism
- 3.Heat Production in Metabolic Reactions
- 4.Heat Production in Bacterial Growth Processes

1. Bacteria

Relative scale.svg (SVG file, nominally 936 × 762 pixels, file size: 31 KB)

Bacteria, Morphology

Bacteria Escherichia coli, Th. Escherich (1919)

Ref. A.Trampuz et al., Biocalorimetry..., Trans-2007-0018.R2

Bacteria Streptococcus Mutans (Karies), Clarke (1924)

Ref. A.Trampuz et al., Biocalorimetry..., Trans-2007-0018.R2

2. Phenomenology of Bacterial Heat Production (Allometry)

Basic Metabolic Rate \simeq Heat Production of Aerobics

Creature	Mass/kg	Metabolic Rate J0 / W	Food Substrate	Heating Value MJ/kg	Consump- tion kg/day
Bacteria Staphylococcus aureus	0,5•10 ⁻¹⁵	120 nW	glucose	15,6	0,665. 10*(-9)
Men	80 kg	94 W	various	20	0,40
Lion	120 kg	127 W	meat	30	0,37
Elephant	3000 kg	1,418 W	grass	10	12,3

Activation factor : $J_0 \rightarrow (2-5)J_0$

Kleiber's Constant : Temperature Dependence

Bacteria growth processes, sterilisation.

$$a = a(T_b, T^*) = A.(T_B - T^*).e^{-q^*/RT^*}$$

- T_b....Maximum temperature of living system T^{*}....Environmental temperature
- q^{*}....Energy (metabolism, heat transfer)

Enviromental temperature for maximum metabolism

$$T^*_{\text{max}} = \frac{q^*}{2R} \left(-1 + \left(1 + 4RT_b / q^* \right)^{1/2} \right)^{1/2}$$

Example : Dogs, hair cut,TB=41 C Data : Jeroch et.al.(1999)

Autometabolism of Bacteria

Lack of substrate: Living period? Heat production?

 $t_{max} \simeq 4h$

$$a + 1 \ge 0$$

3. Heat Production in Metabolic Reactions*

Example (Yeast) Genes 5000 Metabolites 1000-5000 Concentration^{*)} (0.1-10) m mol Turn over time $\frac{\text{Concentration}}{\text{Reaction rate}} = (1 - 10)_{\text{S}}$ ^{*)} Osmotic pressure limited. Avoiding byproducts and byreactions.

*Microbiothermodynamic system, Microbioreactor

Bioreactors

Microbial Growth at Constant Substrate Concentration

^{*)}Limited by e-transport

capacity in cell membranes: $3 \mod(\bar{e})/C - \mod(x)h$ (298K)

BC 13

Bacteria Stylonychia (Wimpertierchen / Eyelash bacteria)

Microbial Growth System

Anabolism + Catabolism (Free Entalpy)

Bacterial Growth Process and Heat Production (I) Thermodynamic Analysis

Bacterial Growth Process and Heat Production (I) Thermodynamic Analysis

Energy balance

Extensivity, CEOS

$$\dot{U} = h_e J_e - h_p J_p + \dot{Q}_B$$
 (3), $\dot{U} = u\dot{M}$ (3A)

Entropy balance

Extensivity, EEOS

$$\dot{S} = s_e J_e - s_p J_p + \frac{\dot{Q}_B}{T} + P_s \quad (4), \qquad \dot{S} = s\dot{M} \quad (4A)$$
$$P_s \ge 0 \qquad (5)$$

Bacterial Growth Process and Heat Production (II)

Thermodynamic Analysis, Eqs. (1-4A)

Substrate flow

Irrev. Process needs more substrate

Product flow

Delivers less product

Bacterial Growth Process and Heat Production (IIa)

Heat flow

Irreversible process

$$Q_B = \left(u + \frac{\left(g_p - g\right)h_e - \left(g_e - g\right)h_p}{g_e - g_p}\right) - \frac{h_e - h_p}{g_e - g_p} \bullet TP_s < \dot{Q}_{B rev}$$

Population dynamics

$$J_{e \ tot} = n_0 \exp(t / \tau) J_e;$$

$$J_{p \ tot} = n_0 \exp(t / \tau) J_p;$$

$$\dot{Q} = n_0 \exp(t / \tau) \dot{Q}_B$$

needs less heat $(\dot{Q}_{B rev} > 0)$ produces more heat $(\dot{Q}_{B rev} < 0)$

Problems: Metabolic reactions ? Thermodynamic data ?

4. Heat Production in Bacterial Growth Processes

Isothermal Calorimeter

Metabolic generation of heat

$$dQ \simeq -dm_s \tag{1}$$

$$\dot{Q} = -K_s \dot{m}_s \tag{2}$$

$$Q(t) = K_s(m_{s0} - m_{s(t)})$$
 (3)

$$Q(\infty) = K_s m_{s0} \tag{3a}$$

Mass / molar balance grouth process

$$dn \simeq -dn_s$$
 (4)
 $\dot{n} = -C\dot{n}$ (4a)

 $C \ge 0$

Bacterial Growth Prozess Model I (Monod)

$$n(t) = n_0 + (n_{\infty} - n_0) \frac{(bt)^{\alpha}}{1 + (bt)^{\alpha}};$$

$$n(0) = n_0 \qquad \alpha \ge 1;$$

$$n(\infty) = n_{\infty} \qquad b > 0.$$
(5)

Substrate
(4)
$$\dot{n} = -C\dot{n}_{s};$$

(5) $n_{s} = \frac{n_{s0}}{1+(bt)^{\alpha}}.$ (6)

(2)
$$\rightarrow \dot{Q} = -K_s \dot{n}_s = \frac{K_s}{C} \dot{n};$$
 (7)

$$\dot{Q} = K_{\alpha} b(n_{\infty} - n_0) \frac{(bt)^{\alpha - 1}}{(1 + (bt)^{\alpha})^2}.$$
 (8)

Maximum value

$$bt_{\max} = (\alpha - 1)^{\frac{1}{\alpha}}; \tag{9}$$

$$\dot{Q}_{\max} = \frac{Kb(n_{\infty} - n_0)(\alpha - 1)^{1 - \frac{1}{\alpha}}}{\alpha}.$$
 (10)

Bacterial Population Growth Prozess Model II

$$dn \approx nn_{s}dt \qquad (12)$$

$$\dot{n} = An_{s}n \qquad (13)$$

$$n(t) = n_{0} \exp\left\{A\int_{0}^{t} n_{s}(t')dt'\right\} \qquad (15)$$

$$(3) \rightarrow n(t) = n_{0} \exp\left\{A\int_{0}^{t} (n_{so} - \frac{Q(t')}{(K_{s})})dt'\right\} (16)$$

$$\widehat{\Pi}$$

Bacterial Population

Heat generated in broth

Growth of Population and Depletion of Substrate

Substrate

$$dn_s \simeq -n_s ndt$$
 (17)
 $\dot{n} = -Bnn_s$ (18)

$$(13,18) \rightarrow \qquad \ddot{n} - \frac{\dot{n}^2}{n} + Bn\dot{n} = 0$$
$$\ddot{n} - \frac{\dot{n}_s^2}{n_s} - An_s \dot{n}_s = 0$$

$$ODEs: n = n(t), n_s = n_s(t)$$

Bacterial Growth Prozess Model I (Monod)

Staphylococcus aureus (ATCC29213)

Size: 50.000:1Diameter: $(0,8-1,2)\mu m$ Density: $\approx 0.8 \ g \ / \ cm^3$

Parameter determination from heat power-curves: Staphylococcus aureus

	$z_1: t_1, \dot{Q}_1$	$(bt_1)^{\alpha} \ll 1$
	$z_2: t_2, \dot{Q}_2$	$(bt_2)^{\alpha} \ll 1$
(5)→	$\alpha = 1 + \ln\left(\frac{\dot{Q}}{\dot{Q}}\right)$	$\left(\frac{t_1}{t_2}\right) / \ln\left(\frac{t_1}{t_2}\right)$
Мах	kimum heat pov	ver: $(t_{\max}, \dot{Q}_{\max})$
(9)→	$b = \frac{1}{t_{\max}} (\alpha - $	$1)^{\frac{1}{\alpha}} = \dots$
(10)→ $\dot{Q}_{\rm n}$	$_{\rm max} = K(n_{\infty} - r)$	$(\alpha - 1)^{1 - \frac{1}{\alpha}} / \alpha$
Ç	$Q_{\infty} = K(n_{\infty} - r)$	$n_0) = \dots$

CFU	n ₀ ¹ =10 ⁶	n ₀ ² =10 ⁴	
α/1	3,789	2,905	
b/min ⁻¹	2,63·10 ⁻³	1,24·10 ⁻³	
b ⁻¹ /min	380	806	
Q _∞ /J	12,63	17,45	
n∞	3,6·10 ⁶	3,6·10 ⁶	

CFU= Colony forming units / bacterien

Staphylococcus aureus

Population Dynamiks, Heat Production^{*)}

$$n(t) = n_0 + (n_{\infty} - n_0) \frac{(bt)^{\alpha}}{1 + (bt)^{\alpha}}$$

 $\dot{Q} = K\dot{n}$

$$\dot{Q} = K(n_{\infty} - n_0) \alpha b \frac{(bt)^{\alpha - 1}}{\left(1 + (bt)^{\alpha}\right)^2}$$

^{*)}Caloric measurements: Trampuz et.al., Basel

	Unit	1	2
Initial number of bacteria	CFU	10 ⁶	10 ⁴
Max. heat production	μW	310	190
Time at max. production	min	500	1000
Total heat generated	J	12,6	17,5
Final number bacteria	CFU	3,6• 10 ⁶	3,6• 10 ⁶
Time at half prod.	min.	400	800

References (Selection 1)

PLANCK M.: Vorlesung über Thermodynamik, 11. Aufl., 1964, W. de Gruyter, Berlin – New York.

VOET D & VOET J G: Biochemistry, J.Wiley&Sons,2nd Ed. 1995 New York

Lörinczy D., Editor, The Nature of Biological Systems as Revealed by Thermal Methods, Kluwer, Dordrecht, p. 355, 2004.

VON STOCKAR U., VAN DER WIELEN L.A.M.,

Back to Basics: Thermodynamics in Biochemical Engineering, Adv. in Biochemical Engng./Biotechnology, 80 (2003), p. 1-17.

HAINIE D.T.: Biological Thermodynamics, Cambridge
University Press, Cambridge, UK, 2001.
RAFFA R.B.: Editor: Drug – Receptor Thermodyn., Introduction
& Applications, J. Wiley & Sons, 2001, New York etc.

JUK USI 2008 References (Selection 2)

Journal of Non-Equilibrium Thermodynamics, Review Articles, W.de Gruyter, Berlin – New York, since 1976 :

1.WINTER R., LOPES D., GRUZIELANEK ST., VOGTT K. Towards an Understanding of the Temperature / Pressure Configurational and Free-Energy Landscape of Biomolecules, 32(2007),p. 41 - 97.

2.HUBBUCH J., KULA M.-R.

Isolation and Purification of Biotechnological Products, 32(2007), p.99 - 127.

3.RUBI J.M., NASPREDA M., KJELSTRUP S., BEDEAUX D. Energy Transduction in Biological Systems: A Mesoscopic Non-Equilibrium Thermodynamics Approach, 32(2007), p. 351-...

4.KELLER J.U. et al. An Outlook on Biothermodynamics, in preparation, 33(2008)

