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Abstract

The application of concepts, principles, and methods of thermodynamics of equi-
libria and processes to bioengineering systems has led to a new and growing field:
engineering biothermodynamics. This article is the second in a series devoted to
presenting to the biophysical chemist and the biochemical engineer the funda-
mentals and also the possibilities of this field, the latter aspect being demonstrated
by examples. Here we will elaborate on the thermodynamics of adsorption phe-
nomena of proteins on solid surfaces. Equilibria and processes of single- and
multi-component protein solutions including an inert sorbent surface to adsorb
proteins will be considered. Also, phenomena such as multi-contact adsorption
of a (big) protein on a surface and the (often irreversible) denaturation process
of a protein after adsorption will be discussed in brief.

1. Introduction

Proteins can adsorb on or stick to nearly every solid or liquid surface. This
phenomenon is due to the (normally) heterogeneous structure of the surface
of a protein, which includes hydrophilic as well as hydrophobic atomic groups
[1]. Interestingly, proteins normally do not adsorb on each other, but when
they do, they may form string- or sphere-like aggregates, thus losing their
biochemical or physiological properties, which may in turn lead to disease.
We will discuss this phenomenon in a subsequent paper of this series.
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2 J.U. Keller

Adsorption phenomena of proteins are of importance in many fields of bio-
technology and related natural sciences. Examples are:

– immobilization of proteins, enzymes, and other biomolecules on surfaces
to keep them or separate them from other components in a broth;

– use of adsorbed proteins in diagnostics as biosensors;

– biofouling and/or contamination of surfaces by adsorbed proteins as for
example casein (milk protein) at the bottom of a pot of milk during heating;

– storage of proteins in pores of a carrier material for controlled release (drug
targeting);

– separation of proteins in downstreaming processes (chromatography);

– and many more [2–4].

An interesting example with considerable technical potential is provided by
the common sea barnacle (order Cirripedia). This salt-water preferring small
shell is known to produce a certain protein that serves as a glue allowing the
creature to attach itself to surfaces of all kinds, especially ships’ bottoms. A
special feature of this protein-glue is its resistance against water, whereas most
glues used today are subject to water corrosion, leading finally to a breakdown
of the adhesive properties of the glue.

In the following, we will restrict discussion to adsorption phenomena on inert
solid surfaces; that is, liquid–gas surfaces will not be considered. We start
by outlining the thermodynamics of the adsorption phenomena. Next, we
will discuss the Langmuir adsorption isotherm and the related kinetics, as
these are of practical importance for protein adsorption phenomena. Single
protein component systems are presented first, followed by a multi-component
systems analysis.As proteins are very large molecules compared to molecules
of most solvents used today, it may happen that a protein in an adsorbed state
on a solid surface has not only one but several contact regions, i.e., atomic
groups on its surface being in contact with such groups from the surface of
the solid sorbent. This is the phenomenon of multi-contact adsorption, which
leads to considerable changes in both the equilibria states and the kinetics
of adsorption, as desorption of the protein is more difficult than in a single-
contact situation. In a first approach, we always assume the adsorption process
to be reversible, i.e., we assume a protein desorbing from a surface to be in the
same state as prior to adsorption. As this assumption often fails in practice,
we will finally consider a combined adsorption and denaturation process of a
protein and also provide a special example for this.
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2. Adsorption thermodynamics

As proteins often are dissolved in an aqueous solution, we first will discuss
some basic thermodynamic concepts and equations of adsorption phenomena
from liquid solutions. Then we will present several adsorption isotherms, i.e.,
relations describing the amount of a protein adsorbed on a given surface or
amount of material – a so-called sorbent – at a given temperature and concen-
tration of the protein in the surrounding liquid phase. After this, we will also
present simple models to describe the kinetics of the adsorption or desorption
process. We always start with single protein component phenomena and then
extend the formalism to multi-component protein systems, as they are more
prevalent in practice.

The basic experiment to prove adsorption of a protein from a solution or
“formulation” on a solid surface is sketched in Figure 1: A certain amount
of inert but possibly porous material of mass (ms) is put into the – say –
aqueous solution consisting of (nf

0) moles of protein, (nw) moles of water and
having the volume (Vf ) at temperature (T) and pressure (p). After immersion
of the sorbent, part of the protein will stick to its surface, thus lowering
the protein concentration in the solution. Naturally, some water will either
penetrate macropores of the sorbent or even be adsorbed on its meso- and
micropores. However, we assume that this amount of water (na

w) is always
much smaller than (nw), i.e., (na

w � nw). The validity of this assumption
and necessity for possible corrections can be easily checked by immersing
the sorbent in pure water only and weighing it after removing it from the
water [5].
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Figure 1 Inert solid material (ms) being immersed in an aqueous solution (nw) of protein (nf
0) at

temperature (T) and pressure (p). The amount of protein adsorbed on the inert surface of the sorbent
is designated by (na); the amount of protein still in solution, by (nf ).
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4 J.U. Keller

The molar balance of the protein is

nf
0 = nf + na = const. (1)

Here (nf ) is the amount of protein still dissolved in the water and (na) is the
amount of protein adsorbed on the surface of the sorbent material. Introducing
the protein’s bulk concentration prior to and after immersion of the sorbent
material by

c0 = nf
0

Vf
, c = nf

Vf
, (2)

one can calculate (na) from Eq. (1) as

na = (c0 − c)Vf (3)

if the protein’s concentrations (c0 ≥ c) have been measured and (Vf ) is known.
For this, a variety of experimental methods is available. We mention only
spectroscopy here, i.e., UV fluorescence, light scattering, and light absorp-
tion methods.Also, dielectric permittivity or high-frequency rheological mea-
surements, or calorimetric methods, i.e., measurements of heat capacities or
protein-specific enthalpies can be used. Some proteins also immerse ions or
atomic groups upon adsorption. This effect may also be used for (probably
irreversible) adsorption measurements [6, 7].

Considering now the system in Figure 1 consisting of the protein in the aque-
ous solution with concentration c, the protein (na) being adsorbed on the
surface of the sorbent material with sorption active area (A), constant mass
(ms � A), and constant volume (Vs), we can formulate the condition for
thermodynamic equilibrium in the usual way, namely by minimizing the free
energy F of the whole system at constant temperature (T), total volume of the
system (Vf + Vs), and sorption active area (A). Assuming F to be the sum of
the free energy of the protein containing water phase (Ff ) and the free energy
of the protein adsorbate (Fa), we have

Ff + Fa → Min, (4)

T = const, A = const, Vf = const, Vs = const. (5)

Here Ff is the free energy of the protein solution with Gibbs equation

dFf (T, Vf , nf , nw = const) = −Sf dT + pf dVf + μf dnf . (6)
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Similarly we have for the free energy (Fa) of the adsorbed protein

dFa(T, A, na) = −SadT + πdA + μadna. (7)

Here (π) is the so-called spreading pressure of the adsorbed protein phase to
be calculated from its thermal equation of state (EOS),

π = π(T, A, na). (8)

The minimization condition,

d(Ff + Fa) = 0, (9)

delivers in view of Eqs. (1) and (5) the equilibrium condition

μa(na, A � ms = const, T) = μf (c = nf /Vf , T), (10)

from which on principle the amount of protein adsorbed, i.e., the so-called
adsorption isotherm, can be calculated as

na = na(A � ms, c = nf /Vf , T). (11)

Note that the external pressure (p) of the system is implicitly included in this
result as the volume of the fluid phase depends on it via the fluid’s thermal
EOS:

Vf = Vf (nw = const, nf , p, T). (12)

Also, the pressure will influence the conformation of the protein and hence
its tendency for adsorption. But this is not taken into account explicitly.

For practical use of the equilibrium condition (10), it is necessary to relate the
chemical potential of the adsorbed phase (μa) with the thermal equation of
state (EOS) of the adsorbate (8), where (π) is the so-called spreading pressure,
i.e., a measure for the tendency of the adsorbed proteins to spread out on the
available surface (A) of the sorbent material. It is related to the surface tension
of the adsorbate but cannot be measured directly [8].

For this purpose, we consider the Gibbs–Duhem equation following from the
total differential of the free energy of the adsorbed phase,

dFa = d(μana − πA) = μadna + nadμa − πdA − Adπ, (13)
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and the Gibbs equation (7) as

Adπ = nadμa. (14)

In view of Eq. (13) and the side conditions (5), this relation can be integrated
to give a representation of the chemical potential of the adsorbed phase,

μa(na, T, A = const) − μa
0 =

na∫
na

0

1

na

(
∂π
∂na

)
A,T

dna. (15)

Here (na
0, μa

0) are the mole number and the chemical potential of the adsorbate
in a certain (isothermal) reference state.

3. The ideal protein adsorbate

For the simplest case of an “ideal adsorbate”, we have the thermal EOS, which
is similar to the ideal gas EOS, namely

πA(ms, T) = naRT, (16)

with the – possibly temperature-dependent – adsorption area A (ms, T) and
the universal gas constant (R = 8.314 J/mol K) [9]. Inserting this in Eq. (15),
we get

μa(na, T, A) − μa
0 = RT ln

(
na

na
0

)
. (17)

For the protein in aqueous solution (sorptive phase), we choose the ideal
osmotic model, i.e., assume the osmotic pressure of the protein to be

pf = cRT = nf

V0
RT. (18)

Using the analogy: ideal gas molecule / vacuum � protein (particle) / water,
we can write for the chemical potential of the protein:

μf (pf , T) = μf (pf
0, T) + RT ln

(
pf

pf
0

)
, (19)
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which, in view of Eqs. (18) and (2), can be rewritten as

μf (c, T) = μf (c0, T) + RT ln

(
c

c0

)
. (19a)

The condition for adsorption equilibrium (10) now delivers together with
the model equations for the chemical potentials of the sorptive (f) and the
adsorbed (a)-phase (19a), (17) the adsorption isotherm of the system,

na(c, T) = K(T)c, (20)

with the temperature-dependent constant,

K(T) = na
0(c0, T)/c0. (21)

Here, (na
0) is the amount of protein adsorbed in the isothermal reference state

of the system with bulk concentration (c0 = nf
0/V0). According to Eq. (20),

the amount of protein adsorbed increases linearly with the concentration of
protein in the surrounding liquid phase. This equation also may be interpreted
as a first-order Taylor series expansion of the sorbate function na = na(c, T),
higher-order terms probably being necessary at increasing protein concentra-
tions (c) in the solution. Indeed, if the protein in the solution is not described
by the chemical potential (19) but by its real fugacity (f), i.e., if

μf (c, T) = μf (c0, T) + RT ln

(
f (c, T)

c0

)
, (22)

the equilibrium condition (10) leads to the isotherm

na(c, T) = K(T)f (c, T), (23)

which, after introducing a quasi virial expansion for the fugacity,

f (c, T) = c(1 + B(T)c + C(T)c2 + . . .), (24)

leads to a series expansion form of the adsorption isotherm (23) as

na(c, T) = K(T)c(1 + B(T)c + C(T)c2 + . . .). (25)
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8 J.U. Keller

Naturally, thermodynamics can neither give explicit expressions for the tem-
perature-dependent virial coefficients B = B(T), C = C(T). . ., nor can it
deliver numerical values or these coefficients. They have to be determined
from carefully performed experiments [D10, D11 in Part I].

4. The Langmuir adsorption isotherms (N = 1)

An adsorption isotherm which often is used to describe nonlinear effects
in singl-component (N = 1) protein adsorption equilibria is that given by
Langmuir (1916) [5, 8, 9]. Its main prerequisites are

– the adsorbed proteins (adproteins) form at most a single layer, i.e., no mul-
tiple layer sorbates occur;

– all adsorption sites are energetically equivalent, i.e., the energy or enthalpy
of adsorption is a constant;

– the adproteins are isolated from each other, i.e., no interactions between
adproteins are taken into account.

If these assumptions hold, the adsorption process of the system in Figure 1
can simply be modeled as follows: The number of proteins adsorbed during
the time interval (t, t + dt) is proportional to the concentration (c) of proteins
in solution and to the number of free or unoccupied adsorption sites available
on the surface, given by

dn+ = k+c(n∞ − na)dt. (26)

Here, (n∞) is the number of proteins adsorbed on the surface (A) of the sorbent
material (ms) in a monolayer at limiting protein concentration (c → ∞)
where (k+) is a constant. Likewise, the number of proteins being desorbed
during (t, t + dt) is proportional to the number (na) of proteins already being
adsorbed:

dn− = k−nadt. (27)

For equilibrium, the condition

dn+ = dn− (28)
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must hold. Hence we get with Eqs. (26) and (27)

na(c, T) = n∞(T)
b(T)c

1 + b(T)c
, b = k+/k−, (29)

with the limiting condition

lim
c→0

na(c, T) � n∞(T)b(T) · c, (29a)

lim
c→∞ na(c, T) � n∞(T). (29b)

The parameters n∞(T), b(T) may depend on the temperature of the system.
Indeed, simple functions for these are, cf. also Eq. (D63) in Part I,

n∞(T) = n∞(T0) exp

(
− Qs

R

(
1

T
− 1

T0

))
, (30)

1

b(T)
= 1

b(T0)
· exp

(
−Qa

R

(
1

T
− 1

T0

))
. (31)

Here (Qs) is a normally very small energy related to the thermal expan-
sion/contraction process of the sorbent material and (n∞(T0)) is the limiting
amount adsorbed in a monolayer at the surface of the sorbent at the refer-
ence temperature (T0). Likewise, (Qa) is the adsorption enthalpy at (T0) and
(b(T0))−1 is the protein concentration in the solution needed to get the “half-
load” of (n∞) to be adsorbed, i.e., we have na(b−1(T0), T0) = n∞/2.

By inversion of Eq. (29), we can also simply get the so-called adsorption
isostere, i.e., the concentration of protein needed in the liquid sorptive phase
to maintain a given amount of protein (na) to be adsorbed:

c (na, T) = 1

b (T)
· na/n∞

1 − (na/n∞)
. (32)

4.1. Kinetics of the Langmuirian adsorption process

The kinetics of the protein adsorption process related to the model equations
(26) and (27) can be easily presented by using the balance equation for the
protein adsorbed:

dna = dn+ − dn−. (33)
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10 J.U. Keller

This, together with Eqs. (26) and (27), leads for constant bulk concentration
(c = const) of the protein and the initial condition na(0) = 0 after simple
integration to

na(t) = n∞
b c

1 + b c
(1 − et/τ), (34)

1

τ
= k−(1 + b c), (35)

i.e., a simple relaxation behavior of the amount of protein adsorbed limiting
in its equilibrium value already given by Eq. (29). The relaxation time (τ) is
according to Eq. (35) the shorter, the higher the bulk concentration (c) in the
solution is.

If however c varies in time, the foregoing result is not valid. Instead, one has
to consider a more reliable kinetic theory of the adsorption/desorption pro-
cess.A simple example for this is provided by thermodynamics of irreversible
processes, cf. literature given in Part I [E3, E4, D7, D12].To elucidate this for-
malism, we start by considering the adsorbed proteins (adsorbate) as an open
thermodynamic system exchanging mass with its bulk solution surroundings
and being at isothermal conditions with constant sorptive active surface (A).
Then, from the

– First Law of Thermodynamics:

dUa = dQ + hf dna, (36)

– the Gibbs equation:

dSa = 1

T
dUa + π

T
dA − μa

T
dna, (37)

– and the balance equation for the entropy:

dSa = dQ

T
+ sf dna + dSa

in, (38)

the entropy production of the adsorption process can be derived as

Ps =
(

d Sa
in

dt

)
T

= 1

T
(μf − μa) ṅa ≥ 0. (39)
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According to the principle of Eckart and Onsager, a process equation for
the “thermodynamic flux” (ṅa) can be set up as a series expansion in the
“thermodynamic force” (μf − μa), i.e.,

ṅa(t) = LpA(μf (c, T) − μa(na, A, T)) + O(2). (40)

In the equations above, (Ua, Q, hf ) indicate the internal energy of the adsor-
bate, the heat exchanged during the adsorption process, and the molar enthalpy
of the proteins coming in from the bulk phase and being adsorbed. Similarly,
(Sa, sf , Sa

in) are the entropy of the adsorbate, the molar entropy of the proteins
in the bulk phase, and the entropy produced during the adsorption process.
Finally, (Lp) is a phenomenological mass transfer coefficient characterizing
the adsorption process. According to the 2nd Law (39), it always is positive
(Lp ≥ 0).

Now, for the sake of simplicity, we restrict the discussion to ideal protein
solutions, i.e., we assume for the chemical potential the form

μf (c, T) = μf (c+, T) + RT ln
( c

c+
)

. (41)

Here, (c+) is the protein concentration of a certain reference state. In view
of the equilibrium condition for the sorption system (10), we then can write
for the chemical potential of the protein adsorbate using Eq. (41) and the
substitution (c+ → c, c → cE(na, A, T)):

μa(na, A, T) = μf (cE(na, A, T), T)

= μf (c, T) + RT ln

(
cE(nn, A, T)

c

)
. (42)

Here, (cE) indicates the fluid concentration of the protein that would be nec-
essary to equilibrate the protein adsorbate at amount (na), sorption active
surface (A), and temperature (T). Assuming the adsorbate to obey the Lang-
muir isotherm (29), (cE) is given as a function of (na) by Eq. (32). Hence, we
get from the process equation (40) together with Eqs. (42), (32):

ṅa(t) + LpA RT ln

(
na/na∞

b(1 − (na/na∞)

)
= LART ln c(t), (43)

which is an ordinary differential equation (ODE) for the amount of protein
adsorbed (na(t)) at the given (and possibly time-dependent) protein bulk con-
centration (c(t)). For its solution, an initial condition (na(t = 0) = na

0) has to
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12 J.U. Keller

be specified and numerical methods (MATH-CAD etc.) have to be applied.
As adsorption processes of proteins are gaining increasing application, pri-
marily for protein isolation and purification, it would be worthwhile to apply
the above formalism to a real protein adsorption process. A thesis dealing
with the adsorption of bovine-α-lactalbumin on a polymer is in preparation
and should be available in 2010.

4.2. Multicomponent protein adsorption

Let us now extend the formalism given above to biofluids including not only
one but many different types of proteins, enzymes, etc., all of which have a
certain tendency to adsorb on the surface of a given sorbent. That is, we are
now going to consider coadsorption processes, which often can be found in
real biofluids or broths. The system consists of an inert sorbent of mass (ms),
sorption active surface (A), liquid water as solvent (nw), and N ≥ 1 different
proteins of total mole numbers:

nio = nf
i + na

i , i = 1 . . . N. (44)

Here, (na
i ) is the number of moles of protein (i) adsorbed on (A) and (nf

i ) is
the number of moles of protein (i) still in the aqueous solution. All phases
are at the same temperature (T). The external pressure is (p). The system is
sketched in Figure 2.

The molar concentration of the proteins in the solution are

ci = nf
i

Vf
= yic, i = 1 . . . N., (45)

with the volume of the solution,

Vf = Vf (nw, nf
1 . . . nf

N, p, T), (46)

and the molar fractions (yi), total mole number of proteins in solution (nf ),
and total concentration (c) defined by

yi = nf
i

nf
= ci

c
, i = 1 . . . N, (47)

nf =
N

∑
i=1

nf
i , (48)
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Figure 2 Multi-component sorption system consisting of water (nw) as solvent, N ≥ 1 many
different protein solutes (nf

i , i = 1 . . . N), a coadsorbed phase with mole numbers (na
i , i = 1 . . . N),

and an inert sorbent of mass (ms) and surface active area (A).

c =
N

∑
i=1

ci. (49)

Mind that the molar fractions (yi) do not include the mole number of the
solvent (nw).

It is sometimes more convenient to use instead of the protein molar concen-
trations (ci) the related ideal osmotic partial pressures:

pf
i = nf

i RT

Vf
= ciRT, i = 1 . . . N. (50)

Obviously, in view of Eqs. (47), (49), these also can be written as

pf
i = yip

f , i = 1 . . . N, (51)

pf = nf RT

Vf = cRT, i = 1 . . . N. (52)

The conditions for thermodynamic equilibrium between the liquid sorptive
phase (nf

1 . . . nf
N) and the adsorbate phase (na

1 . . . na
N) can be derived from basic

thermodynamic principles in the same way as for single protein solutions
(N = 1). This has been outlined at the beginning of this section. Hence, we
can restrict the discussion to citing the resulting equations, cf. Eq. (10), [12],

μa
i (na

1 . . . na
N, A, T) = μf

i (c1 . . . cN, T) i = 1 . . . N, (53)
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14 J.U. Keller

which require equality of the chemical potentials, i.e., the tendency of a protein
of component (i) to spread out from its respective phase (a, f ).These equations
together with the conservation equations (44) allow us in principle to calculate
the distribution of the proteins between the solution and the adsorbate phase,
i.e., figures of (nf

i , na
i , i = 1 . . . N), if the total amounts (nio) of proteins are

given and models for (na
i , nf

i ) have been introduced.

For the liquid phase, we restrict the discussion here to presenting the (formal)
representation of the chemical potential by its mixture fugacities [E5 in Part 1],
[12], i.e.,

μf
i (c1 . . . cN, T) = μi0(ci0, T) + RT ln (fi(c1 . . . cN, T)/ci0), (54)

with the Taylor series expansion,

fi(c1 . . . cN, T) =

ci

(
1 +

N

∑
k=1

Bik(T) ck +
N

∑
k=1

Cikl(T) ckcl + . . .

)
, (55)

and (ci0) being a reference concentration that may be chosen for any compo-
nent individually. Also in Eq. (54) (μio) is the chemical potential of the pure
protein (i) in the aqueous solution at concentration (ci0) and temperature (T).
It should be noted that in principle the fugacity (fi) also would depend on the
choice of the reference concentration (ci0) and on the system’s pressure (p).
However, in engineering applications both dependencies are neglected for the
sake of simplicity or – more often – time and economic pressures.

As far as the coadsorbate (na
1 . . . na

N) is concerned, we restrict ourselves to
mentioning only

– the multicomponent extension of the ideal adsorption isotherm in its virial
expansion (25), which reads as

na
i (c1 . . . cN, T) =

Ki(t)ci

(
1 +

N

∑
k=1

Bik(T)ck+
N

∑
k,l=1

Cikl(T)ckcl + . . .

)
, (56)

with

Ki(T) = na
i (cio, T)

cio
. (57)
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Here (ci0 → 0) is a small reference concentration and (na
i (cio, T)) the re-

spective amount adsorbed at this concentration.The temperature-dependent
virial coefficients (Bik(T), Cikl(T). . .) are defined by the series expansion
of the fugacity of protein (i) in the liquid phase, cf. Eq. (55). These coeffi-
cients in principle can be experimentally determined by osmotic pressure
measurements [13]. If the series expansion in Eq. (56) is truncated after the
zeroth order term, the resulting isotherms,

na
i (c1 . . . cN, T) = Ki(T)ci, i = 1 . . . N, (58)

obviously only hold for a very small concentration, i.e., in the so-called
Henry limit (ci → 0).

– Also we would like to mention the multi-component extension of the Lang-
muir adsorption isotherm (29). It is based on the two-model equation for
the amount of protein of type (i) being adsorbed (dn+) and desorbed (dn−),
respectively, within a time interval (dt):

dn+
i = k+

i ci

(
n∞ −

N

∑
k=1

na
k

)
dt, i = 1 . . . N, (59)

dn−
i = k−

i na
i dt. (60)

The dynamic equilibrium conditions

dn+
i = dn−

i , i = 1. . .N, (61)

deliver together with Eqs. (59), (60) the isotherms

na
i (c1 . . . cN, T) = n∞(T)

bi(T)ci

1 + N
∑

k=1
bk(T)ck

, i = 1 . . . N, (62)

bi(T) = k+
i

k−
i

. (63)

The isotherm (62) has the limiting properties

lim
ci→∞ na

i = n∞(T), i = 1. . .N, (64)
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lim
ci→0

na
i

∼= bin∞

1 + N
∑

k �=1
bkck

ci. (65)

Several generalizations of the isotherms (62) referring most often to the
structure of the sorbent surface (A), i.e., its fractality, pore spectrum, etc..
are known in the literature [5]. A special case of this will be discussed in
the next section of this chapter. Finally we denote the adsorption isosteres
referring to the isotherms (62). These can be easily calculated by applying
symmetry arguments. We get, cf. Eq. (32),

ci(n
a
1 . . . na

N, T) = 1

bi(T)
· na

i

n∞
· 1

1 − N
∑

k=1
na

k/n∞
i = 1. . .N. (66)

These equations allow the calculation of the protein concentrations (ci)
necessary in the fluid phase to maintain the adsorbate loads (na

1 . . . na
N).

The kinetics of pure coadsorption processes at constant bulk concentrations
(c1 . . . cN) and given initial conditions (na

i (t = 0) = na
i0, i = 1 . . . N) can be

easily obtained from the model equations (59), (61) and the protein adsorbate
balance equations:

dna
i = dn+

i − dn−
i , i = 1 . . . N. (67)

The result is

ṅa
i + bici

N

∑
k=1

na
k = bicin∞ = const, i = 1 . . . N. (68)

These are (N) many ordinary differential equations (ODEs) for the functions
(na

1(t) . . . na
N(t)). Depending on the eigenvalues of the respective matrix, oscil-

lations reflecting replacement adsorption between different components may
also occur in coadsorption relaxation. More details about this will be given
in another paper.

For a description of coadsorption processes occurring in bulk protein so-
lutions with concentrations varying in time (c1(t). . .cN(t)), the method of
thermodynamics of irreversible processes is again recommended, cf. [D12,
D13 in Part 1]. We restrict ourselves here to presenting the main results, cf.

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 1



An Outlook on Biothermodynamics. II. Adsorption of Proteins 17

Eqs. (36)–(40): The entropy production in the (isothermal) system in Figure 2
during a coadsorption process is

Ps =
(

dSa
in

dt

)
T

= 1

T

N

∑
i=1

(μf
i −μa

i ) μ̇a
i ≥ 0, (69)

with “thermodynamic forces” (μf
i − μa

i ) and “thermodynamic fluxes” (μ̇a
i ),

i = 1. . .N. Accordingly, we assume the process equations, i.e., relations
between the forces and fluxes in linear approximation, to have the structure:

ṅa
i (t) = A

N

∑
k=1

Lik(μf
k(c1 . . . , T) − μa

k(n1 . . . , T)), i = 1 . . . N. (70)

Here the phenomenological coefficients (Lik, i, k,= 1. . .N) describe for i �= k
cross-effects between different types of proteins possibly interfering with each
other during the coadsorption process. The matrix (Lik) is symmetrical, i.e.,
the Onsager relations,

Lik = Lki, i, k = 1 . . . N, (71)

hold. Also, the matrix (Lik) is positive definite [5], according to the Second
Law (69):

‖Lik‖ ≥ 0, Lii ≥ 0, LiiLkk − LikLki ≥ 0 . . . etc. i, k = 1 . . . N. (72)

The coefficients (Lik) are functions of the temperature, pressure, and in princi-
ple also of the chemical composition of the sorbent fluid. They basically have
to be determined experimentally, which in principle could be done by inverse
reasoning of spectroscopic measurements of time-dependent adsorption loads
(na

1(t) . . . na
N(t)), cf. Eq. (75) and [14–16].

To transform the process equations (70) into a set of ordinary differential
equations (ODEs) for the adsorbate load, we restrict ourselves to an ideal
sorptive fluid phase, i.e., we assume for the chemical potentials of the proteins
in the solution the truncated form, cf. Eqs. (54) and (55),

μf
i (c1 . . . cN, T) = μf

i0(ci0, T) + RT ln

(
ci

ci0

)
i = 1 . . . N. (73)
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The chemical potentials of the adsorbed proteins can be written in view of the
equilibrium conditions (53) and (73) as

μa
i (na

1 . . . na
N, , A, T) =

μf
i (c1E . . . (cNE, T) = μf

i0(ci0, T) + RT ln

(
ciE

ci0

)
. (74)

Here, ciE = ciE(na
1 . . . na

N, T), i = 1 . . . N indicate the concentrations in the
liquid bulk phase that would be necessary to maintain the adsorbate loads
(na

1 . . . na
N) at temperature (T) in equilibrium with the fluid phase.

Introducing Eqs. (73), (74) in the process equations (70), we get in view of
the isosteres (66)

ṅa
i (t)+ART

N

∑
k=1

Lik ln

⎛
⎜⎜⎝ na

k

bkn∞
(

1 − N
∑

l=1
(na

l /n∞)

)
⎞
⎟⎟⎠=ART

N

∑
k=1

Lik ln ck, (75)

i = 1 . . . N.

This is a set of (N) ODEs from which the adsorbate loads (n1(t) . . . nN(t)) can
be calculated if the bulk concentrations (c1(t). . .cN(t)) of the proteins in the
fluid phase are known as functions of time, and initial conditions (ni(t = 0) =
nio, i = 1. . .N) of the preadsorbed proteins are given. For the solution, implicit
numerical methods are recommended to assure stability of calculations.

5. Multi-contact adsorption of proteins from solutions

Proteins normally have many surface-active atomic groups on their surface,
i.e., spots attracted by other atoms of a solid surface. Hence it is to be expected
that adsorption of a protein often will occur not only at one but at several
atomic group contacts, thus intensifying the interaction between the protein
and the sorbent surface. Conversely, desorption will become more difficult,
as for this not only one but all contacts between the protein’s surface atoms
and the sorbent atoms have to be lifted [10, 11]. Phenomenologically, this can
easily be described by a modified Langmuirian adsorption isotherm as follows.
We consider again the system depicted in Figure 1 and restrict ourselves to
mono-layer adsorption phenomena. Assuming a single protein to adsorb not
only at one site but at a ≥ 1 many energetically equivalent sites, the number
of proteins adsorbing in a time element (dt) is given by

dn+ = k+c(n∞ − a · na)dt, (76)
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whereas the number of proteins desorbing in (dt) is

dn− = α(a)k−nadt. (77)

Here (k±) are characteristic constants referring to the single site (a = 1)
adsorption and desorption process, cf. Eqs. (26) and (27), (c) is the bulk
concentration of the protein in the solution in (mol/l) or (μ mol/l), (n∞) is the
number of adsorption sites, and (na ) is the number of proteins already adsorbed
at time (t) on the sorption active surface (A) of the sorbent. The protein-
dependent function α = α(a) ≤ 1 is a reduction factor of the desorption
process. In case all contact sites are independent of each other and also related
to the same desorption energy, α(a) is by purely combinational arguments
given by

α(a) = 1

2a−1 < 1, a ≥ 1. (78)

The equilibrium condition

dn+ = dn− (79)

delivers with Eqs. (76) and (77) the isotherm

na(c, A � ms, T) = n∞AT
ba(T)c

1 + a ba(T)c
(80)

with

ba(T) = b1(T)

α(a)
, b = k+

k− (81)

and the limiting relations

lim
c→0

na(c, T) � ban∞c > b1n∞c, (82)

lim
c→∞ na(c, T) = n∞

a
< n∞. (83)

That is, the multi-contact effects lead at very low concentration to higher
adsorption loads compared to that in the case of single contacts but to a lower
asymptotic load approached at high protein concentrations in the bulk sorptive
phase. This situation is sketched in dimensionless variables in Figure 3.
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(a)

Protein
c

a=3
Sorbent

A
Protein

c

a=3
Sorbent

A

(b)

n n∞

1

1 a
a = 1

a > 1

0
ab c

n n∞

1

1 a
a = 1

a > 1

0
ab c

Figure 3 (a) Multi-contact adsorption of a protein on an open sorbent surface (A) with number
of adsorption contacts (a = 3). (b) Qualitative behavior of the adsorption isotherm (80) for single
adsorption contact (a = 1) and multi-contact adsorption (a > 1).

The number of contacts (a) and the desorption reduction function α(a) on prin-
ciple can be determined from isotherm measurements, i.e., Eqs. (82), (83), if
a reference substance is at hand which exhibits single contact adsorption, i.e.,
would allow the determination of the parameters (n∞, b1), which generally
are expected to depend on the temperature (T) of the bulk solution.

The formalism presented above can easily be extended to multi-component
protein solutions, with each component showing multi-contact adsorption.
This situation is sketched for two proteins (i, k) in Figure 4. By analogous
reasoning, we can model the number of proteins of type (i) adsorbed (dn+

i )
to or desorbed (dn−

i ) from the surface (A) by the relations, cf. Eqs. (76) and
(77), as

dn+
i = k+

i ci(n∞ −
N

∑
k=1

akna
k)dt, (84)

dn−
i = αi(ai) k−

i na
i dt, i = 1 . . . N. (85)

Pi

Pk

ai=2

ak=3

ip,T,c

Pi

Pk

ai=2

ak=3

ip,T,c

Figure 4 Multi-contact coadsorption of proteins of different types (Pi, Pk) with contact numbers
(ai = 2, ak = 3) on an open sorbent surface (A).
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Here the parameters (k±
i , i = 1 . . . N) refer to single site adsorption and

desorption processes (ai = 1) of type (i), (ci) is the bulk concentration of
protein (i), (n∞) is the number of adsorption contact sites available on the
surface (A) of the sorbent, and αi = αi(ai) are desorption reduction functions
of the proteins, which basically have to be measured but may be guessed from
combinatorial arguments such as

αi(ai) = 1

2ai−1
< 1, ai ≥ 1 i = 1. . .N. (86)

The equilibrium condition for protein (i),

dn+
i = dn−

i (87)

leads together with Eqs. (84), (85) to the isotherm

na
i (c1 . . . cN, A � ms, T) = n∞(A, T)

bai(T) ci

1 + N
∑

k=1
akbak(T)ck

, (88)

i = 1 . . . N

with

bai(T) = bi(T)

αi(ai)
, bi(T) = k+

i

k−
i

(89)

and the limiting relations

lim
ci→0

ni
a(c1 . . . cN, T) � n∞bai

1 + N
∑

k �=i
akbakck

ci i = 1. . .N. (90)

According to Eq. (90), the coadsorption isotherm of (ni
a) at low concentrations

(ci) can be very different from that of pure component adsorption (82), i.e.,
it can be either steeper or flatter, reflecting the influence of other components
in the adsorbate. Naturally, all the parameters in Eqs. (88)–(89) have to be
determined from pure component adsorption measurements at low bulk con-
centrations (ci). For higher concentrations, mixture effects in the bulk phase
should be taken into account, cf. the osmotic virial expansion (55).
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6. Adsorption-induced unfolding of proteins

6.1. Basic thermodynamic formalism

Proteins may change their higher order structure upon adsorption, i.e., the en-
zymatic, physiological, and biosensoric properties of the protein are sensitive
to its interactions with open or porous solid surfaces. As an example, we only
mention the denaturation process of bovine α-lactalbumin, which in bulk so-
lutions at ambient conditions and pH = 8 has half-times of about 103 s. Upon
adsorption on (inert) polystyrene nanospheres of diameter (d � 100 nm),
the half-time for denaturation is reduced to only 0.1 s, i.e., by 4 orders of
magnitude [17].

In this section, we are going to outline a formalism to describe this phe-
nomenon, i.e., the interaction between a denaturation process of a protein in a
bulk solution, the adsorption process of the protein on a solid surface, and the
denaturation process of the protein occurring in the adsorbed state. A scheme
of this situation is sketched in Figure 5.

a
Nn a

Dn

Nn

(0.1s)

(103s)
Dn

T
p

pH

fa
NJ af

NJ

a
NDJ

fa
DJ

A
a
Nn a

Dn

Nn

(0.1s)(0.1s)

(103s)(103s)
Dn

T
p

pH

fa
NJ af

NJ

a
NDJ

fa
DJ

A

Figure 5 Protein solution including a sorption active surface (A). The protein in the solution is in
either its native state (nN) or denatured or unfolded state (nD). The protein also may adsorb on (A)
and then either stay in its native state (na

N) or turn to its denatured state (na
D).

The various occupation numbers ([n] = mol) and fluxes ([J] = mol/s) have the
following meaning:

nN . . . protein in native state (N) dissolved in the bulk solution,
nD . . . protein in denatured state (D) dissolved in the bulk solution,
na

N . . . protein in native state adsorbed on the surface (A) of the sorbent
material,

na
D . . . protein in denatured state (D) adsorbed on the surface (A),

Jaf
N . . . flow of proteins in native state from the bulk fluid phase (f) to the

adsorbed phase (a),
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Jfa
D . . . flux of protein in denatured state from the bulk fluid phase to the

adsorbed phase (adsorbate),
Ja

ND . . . transition rate of protein in native state (N) to the denatured state
(D) within the adsorbed phase.

The symbols (T, p, pH) indicate the temperature, pressure, and pH value of
the solution.

To set up the model, we first consider the molar balance equations for the
occupation numbers (nN, nD, na

N, na
D):

ṅN = −ξ̇ND − Jfa
N + Jaf

N , (91)

ṅD = −ξ̇ND − Jfa
D , (92)

ṅa
N = Jfa

N − Jaf
N − Ja

ND, (93)

ṅa
D = Jfa

D + Ja
ND. (94)

Here, (ξ̇ND) is the rate of the transition process of the protein from its native
to a denatured state (N → D) or, possibly, to a whole set of different states of
denatured type. We assume here the transition process to be a quasi-chemical
reaction. Then (ξ̇ND) can be modeled by thermodynamics of irreversible pro-
cesses in the linear approximation as (cf. chapter “Denaturation of Proteins”
in a subsequent paper)

ξ̇ND = AND(μN − μD). (95)

In this equation, (μN, μD) indicate the chemical potentials (kJ/mol) of the
protein in the solution in its native (N) and denatured state (D), respectively.
Also, (AND > 0) is a phenomenological transition parameter that actually has
to be determined experimentally, i.e., by measuring the concentration of the
protein in its native (N) and denatured state (D):

cN(t) = nN(t)

Vf
, cD(t) = nD(t)

Vf
, (96)

Vf = Vf (p, T, nw , np = nN + nD) being the volume of the bulk solution.

Equation (95) can be rewritten as

ξ̇ND = ANDRT ln

(
yNyDE

yNEyD

)
. (97)
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Here the molar fractions,

yN = cN

cN + cD
, yD = cD

cN + cD
, (98)

and the equilibrium concentrations,

yNE = nNE

nNE + nDE
, yDE = nDE

nNE + nDE
, (99)

belonging to the same total amount of protein included in the solution

n = nN + nD (100)

have been introduced. These concentrations are given via the law of mass
action, cf. Chapter “Denaturation of Proteins”, in the “ideal approximation”
as

yNE

yDE
= exp

(
−�GND

RT

)
(101)

with

�GND = μN0(c, T) − μD0(c, T), (102)

c = nN + nD

Vf = n

Vf . (103)

This quantity also has to be determined experimentally as for example by
micro-calorimetric measurements leading to the (free) enthalpy of the transi-
tion (N ↔ D).

Obviously, the term on the r. h. s. of Eq. (97) describes the deviation from
equilibrium of the transition reaction (N ↔ D), i.e., the term vanishes for
(yN = yNE, yD = yDE).

The fluxes (Jfa
N , Jaf

N ) in Eq. (91) are modeled in the Langmuir style, i.e., we
have, cf. Eqs. (26), (59):

Jfa
N = k+

N (n∞ − na
N − na

D)cN, (104)

Jaf
N = k−

N na
N, (105)

J. Non-Equilib. Thermodyn. 2009 · Vol. 34 · No. 1



An Outlook on Biothermodynamics. II. Adsorption of Proteins 25

with (k+
N , k−

N ) being two phenomenological coefficients describing adsorption
to and desorption from the sorbent surface and depending mostly on the
interaction between the native protein and the sorbent, i.e., the adsorption
energy, which may be in the range (20–1000) kJ/mol.

The flow of denatured protein to the sorbent surface is also modeled by a
Langmuirian equation as

Jfa
D = k+

D (n∞ − na
N − na

D)cD, (106)

with the phenomenological transition parameter (k+
D ).

For the transition of the protein in the adsorbate from its native (N) to the de-
natured state (D), we assume the process to be similar to the radioactive decay,
i.e., proportional to the amount of protein adsorbed on (A) in its native state

Ja
ND = 1

τa
ND

na
N (107)

with a protein–sorbent system characteristic decay time (τa
ND), which may

range from (μs) to hours or days.

Mind that refolding of the protein (D → N) in the adsorbate as well as
desorption of the denatured protein have been neglected in the model for
the sake of simplicity. Inserting now all the model equations for the fluxes
(Jfa

N . . . ) into the balance equations for (nN, nD, na
N, na

D), we get four ordinary
differential equations (ODEs), which together with initial conditions (t = 0),

nN(0) = nN0, nD(0) = nD0, na
N(0) = na

N0, na
D(0) = na

D0, (108)

and the conservation equation of the protein,

nN(t) + nD(t) + na
N(t) + na

D(t) = n0 = const (109)

or

ṅN + ṅD + ṅa
N + ṅa

D = 0, (110)

can be solved numerically if all process parameters included, namely

Vf , AND, �GND, k+
N , k−

N , k+
D , τa

ND, (111)

are known – or reasonably guessed by experience.
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The resulting ordinary differential equations are:

ṅN + AND RT ln

(
yNyDE

yNEyD

)
−(k+

N cN + k−
N )na

N − k+
N cNna

D + k+
N n∞ = 0,(112)

ṅD + AND RT ln

(
yNyDE

yNEyD

)
−k+

D cD na
N − k+

D cD na
D + k+

D n∞ = 0, (113)

ṅa
N +

(
k+

N cN + k−
N − 1

τa
ND

)
na

N − k+
N cN na

D + k+
N cN n∞ = 0, (114)

ṅa
D +

(
k+

D cD − 1

τa
ND

)
na

N + k+
D cD na

D − k+
D n∞ = 0. (115)

According to the structure of these equations, we expect them to be for reason-
able numerical values of their parameters (110) numerically stiff [18]. Hence,
implicit or soft methods are recommended for the solution [19]. Obviously,
due to the decay law (107), the asymptotic state of the system for (t → ∞)
will be accumulation of denatured protein in the adsorbate phase. If this is not
observed in experiments, the model should not be used as it must be modified
to take into account this and possibly other empirical facts and properties.

As a simple approximation to the denaturation processes sketched in Figure 5,
one may neglect in a first step the denaturation of the protein in the bulk liquid
phase (f), cf. Figure 6.
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T
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Figure 6 Simple model for denaturation of a protein after adsorption on a solid surface.The sorption
process most easily can be modeled by Langmuirian equations (104), (105).The denaturation process
can be approximated by a stochastic decay model similar to the radioactive decay of atoms (107).

This seems to be justified as this process is often much slower than both the
adsorption process of the protein and the denaturation or decay of the protein
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in the adsorbed phase (a). Taking into account only the latter two processes,
i.e., assuming (AND = 0, Jfa

D = 0, or k+
D = 0, nD = const), Eqs. (112), (114),

and (115) reduce to

ṅD − (k+
N cN + k−

N )na
N − k+

N cN na
D + k+

N n∞ cN = 0 (112a)

ṅa
N +

(
k+

N cN
1

τa
ND

)
na

N − k+
N cN na

D − k+
N cN n∞ = 0 (114a)

ṅa
D − 1

τa
ND

na
N = 0 (115a)

with

cN = nN

Vf

and the free parameters

Vf , k+
N , k−

N , τa
ND, n = nN + na

N + na
D = const.

This system of three nonlinear ordinary differential equations (ODEs) may
have oscillating solutions, which of course finally will lead to the asymptotic
state (t → ∞) where all of the protein is in the denatured adsorbed state.

Naturally, the above formalism can be expanded or generalized to multi-
protein systems showing co- or competitive adsorption and possibly other
interaction effects, such as regeneration of one protein by interaction with
a protein of a different type in either the fluid or the adsorbate phase [20].
Analysis of these phenomena, however, is left to the younger generation of
researchers.

List of symbols

A m2 Surface area (external and internal) of
a sorbent material

a ≥ 1 1 Number of adsorption contacts of a
single protein on the surface of a sor-
bent material
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ak ≥ 1 1 Number of adsorption contacts of a
single protein of component (k) from
a multi-component solution

b (T) cm3/ mol Temperature-dependent parameter in
the Langmuir adsorption isotherm,
Eq. (29)

bi cm3 Parameter of component (i) in the
Langmuir adsorption isotherm of a
multi-component adsorbate

c = nf / Vf mol / l Molar density of protein in solution
after immersion of a sorbent material
in it

c = N
∑
k

ck mol / cm3 Total molar density of all proteins in
a multi-component solution

c0 = nf
0/Vf mol / l Molar density of protein in solu-

tion prior to immersion of a sorbent
material

cE mol / cm3 Equilibrium concentration of protein
in a solution at a given amount (na) of
protein being adsorbed on the surface
(A) of a sorbent

ci = nf
i /Vf mol / cm3 Molar concentration of component (i)

in solution

f = f (p, T, c) mol / cm3 Fugacity of a protein in an aqueous
solution

Fa kJ Free energy of protein adsorbate, i.e.,
protein adsorbed on the surface of a
sorbent material

Ff kJ Free energy of a protein–water
solution

fi mol / cm3 Fugacity of component (i) of proteins
in an aqueous solution

K cm3 Henry constant of the Freundlich ad-
sorption isotherm, Eq. (20)
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Ki cm3 Henry constant of component (i) in
the Freundlich adsorption isotherms
of a multi-component system, cf. Eq.
(58)

Lik mol2 / (kJ m2s) Phenomenological transport coeffi-
cient of a multi-component adsorp-
tion process of proteins from an aque-
ous solution to the surface of a sorbent
material

Lp mol2 / (kJ m2s) Phenomenological transport coeffi-
cient of an adsorption process of pro-
teins in an aqueous solution

ms g Mass of porous adsorbent

N ≥ 1 Number of different proteins in a
multi-component solution

na
i mol Number of moles of protein compo-

nent (i) being adsorbed on the surface
of sorbent mass (ms)

nf
i mol Number of moles of component i =

1. . . N in a multi-component aqueous
solution of proteins after immersion
of a sorbent material in it

nf
0 mol Mole number of protein adsorbed on

the surface of the sorbent material

n∞ mol Limiting amount of proteins being ad-
sorbed on the surface of a sorbent ma-
terial for very high protein concen-
trations in the surrounding aqueous
solution

nf mol Mole number of protein in aqueous
solution after immersion of a sorbent
material in the solution

nW mol Number of moles of water included in
a protein–water solution

p Pa = Nm−2 Pressure
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pf Pa = Nm−2 Osmotic pressure of protein in
solution

pf
0 Pa Osmotic pressure of protein in solu-

tion in a certain reference state

Ps kJ / Ks Entropy production during an adsorp-
tion process

Qs kJ / mol Heat of adsorption of proteins going
from an aqueous solution to the sur-
face of a sorbent

R = 8.314 J / K mol Universal gas constant

Sa kJ / K Entropy of the protein adsorbate

Sf kJ / K Entropy of protein–water solution

Sa
in kJ/K Entropy produced during an adsorp-

tion or desorption process of proteins
in the protein adsorbate

T K Temperature

t s Time

T0 K Temperature of a reference state

Ua kJ Internal energy of a protein adsorbate

Vf
0 cm3 Volume of protein–water solution

prior to immersion of a sorbent ma-
terial in it

Vs cm3 Volume of porous adsorbent

yi = nf
i

/(N
∑
k

nf
k

)
1 Molar fraction of component (i) in

solution

μf
i kJ / mol Chemical potential of protein com-

ponent (i) of proteins in an aqueous
multi-component solution

μa
i kJ / mol Chemical potential of component (i)

of proteins being adsorbed on the sur-
face of sorbent mass (ms)
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μa kJ / mol Chemical potential of proteins ad-
sorbed on the surface of a sorbent
material

μf kJ / mol Chemical potential of proteins in
aqueous solution after immersion of
a sorbent material in it

π kJ / m2 Spreading pressure of the protein ad-
sorbed on the surface of a sorbent
material

τ s Relaxation time of an adsorption
process

ξND 1 Extent of transition reaction of pro-
teins going from a native state to a
denatured state
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